iridoids has been researched along with Fibrosis* in 9 studies
9 other study(ies) available for iridoids and Fibrosis
Article | Year |
---|---|
Geniposide alleviates pressure overload in cardiac fibrosis with suppressed TGF-β1 pathway.
Cardiac fibrosis is one of the main contributors to the pathogenesis of heart failure. Geniposide (GE), a major iridoid in gardenia fruit extract, has recently been reported to improve skeletal muscle fibrosis through the modulation of inflammation response. This investigation aimed to illuminate the cardio-protective effect and the potential mechanism of GE in cardiac fibrosis.. A transverse aortic contraction (TAC) induction mice model was established and GE (0 mg/kg; 10 mg/kg; 20 mg/kg; 40 mg/kg) was administered by oral gavage daily for 4 weeks. Hemodynamic parameters, Masson's trichrome stain, and hematoxylin-eosin (HE) staining were estimated and cardiomyocyte fibrosis, interstitial collagen levels, and hypertrophic markers were analyzed using qPCR and western blot. In vitro, H9C2 cells were exposed to the Ang II (1 μM) pretreated with GE (0.1 μM, 1 μM, and 10 μM). Cardiomyocyte apoptosis was detected. Moreover, the transforming growth factor β1 (TGF-β1)/Smad2 pathway was assessed in vivo and in vitro.. GE significantly ameliorated TAC-induced cardiac hypertrophy, ventricular remodeling, myocardial fibrosis, and improved cardiac function in vivo, and it inhibited Ang II-induced cardiomyocyte apoptosis in vitro. We further observed that the inflammatory channel TGF-β1/Smad2 pathway was suppressed by GE both in vivo and in vitro.. These results indicate that GE inhibited myocardial fibrosis and improved hypertrophic cardiomyocytes with attenuated the TGF-β1/Smad2 pathway and proposed to be an important therapeutic of cardiac fibrosis reduced by TAC. Topics: Animals; Fibrosis; Iridoids; Mice; Myocardium; Myocytes, Cardiac; Transforming Growth Factor beta1 | 2023 |
Synthesis and biological evaluation of geniposide derivatives as inhibitors of hyperuricemia, inflammatory and fibrosis.
Topics: Animals; Fibrosis; Hyperuricemia; Inflammation; Iridoids; Kidney Diseases; Mice; Molecular Docking Simulation; Transforming Growth Factor beta; Uric Acid; Xanthine Oxidase | 2022 |
Geniposide Improves Diabetic Nephropathy by Enhancing ULK1-Mediated Autophagy and Reducing Oxidative Stress through AMPK Activation.
Diabetic nephropathy (DN) is a common pathological feature in patients with diabetes and the leading cause of end-stage renal disease. Although several pharmacological agents have been developed, the management of DN remains challenging. Geniposide, a natural compound has been reported for anti-inflammatory and anti-diabetic effects; however, its role in DN remains poorly understood. This study investigated the protective effects of geniposide on DN and its underlying mechanisms. We used a C57BL/6 mouse model of DN in combination with a high-fat diet and streptozotocin after unilateral nephrectomy and treated with geniposide by oral gavage for 5 weeks. Geniposide effectively improves DN-induced renal structural and functional abnormalities by reducing albuminuria, podocyte loss, glomerular and tubular injury, renal inflammation and interstitial fibrosis. These changes induced by geniposide were associated with an increase of AMPK activity to enhance ULK1-mediated autophagy response and a decrease of AKT activity to block oxidative stress, inflammation and fibrosis in diabetic kidney. In addition, geniposide increased the activities of PKA and GSK3β, possibly modulating AMPK and AKT pathways, efficiently improving renal dysfunction and ameliorating the progression of DN. Conclusively, geniposide enhances ULK1-mediated autophagy and reduces oxidative stress, inflammation and fibrosis, suggesting geniposide as a promising treatment for DN. Topics: AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Autophagy; Autophagy-Related Protein-1 Homolog; Cyclic AMP-Dependent Protein Kinases; Diabetes Complications; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Diet, High-Fat; Disease Models, Animal; Fibrosis; Glycogen Synthase Kinase 3 beta; Iridoids; Mice; Mice, Inbred C57BL; Oxidative Stress | 2021 |
Effects of Geniposide from Gardenia Fruit Pomace on Skeletal-Muscle Fibrosis.
Geniposide is the main bioactive constituent of gardenia fruit. Skeletal-muscle fibrosis is a common and irreversibly damaging process. Numerous studies have shown that geniposide could improve many chronic diseases, including metabolic syndrome and tumors. However, the effects of geniposide on skeletal-muscle fibrosis are still poorly understood. Here, we found that crude extracts of gardenia fruit pomace could significantly decrease the expression of profibrotic genes in vitro. Moreover, geniposide could also reverse profibrotic-gene expression induced by TGF-β and Smad4, a regulator of skeletal-muscle fibrosis. In addition, geniposide treatment could significantly downregulate profibrotic-gene expression and improve skeletal-muscle injuries in a mouse model of contusion. These results together suggest that geniposide has an antifibrotic effect on skeletal muscle through the suppression of the TGF-β-Smad4 signaling pathway. Topics: Animals; Fibrosis; Fruit; Gardenia; Gene Expression; Iridoids; Male; Mice; Muscle, Skeletal; Plant Extracts; Signal Transduction; Smad4 Protein; Transforming Growth Factor beta | 2018 |
An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction.
Acute myocardial infarction (MI) leads to morbidity and mortality due to cardiac dysfunction. Here we identify sericin, a silk-derived protein, as an injectable therapeutic biomaterial for the minimally invasive MI repair. For the first time, sericin prepared in the form of an injectable hydrogel has been utilized for cardiac tissue engineering and its therapeutical outcomes evaluated in a mouse MI model. The injection of this sericin hydrogel into MI area reduces scar formation and infarct size, increases wall thickness and neovascularization, and inhibits the MI-induced inflammatory responses and apoptosis, thereby leading to a significant functional improvement. The potential therapeutical mechanisms have been further analyzed in vitro. Our results indicate that sericin downregulates pro-inflammatory cytokines (TNF-α and IL-18) and chemokine (CCL2) and reduces TNF-α expression by suppressing the TLR4-MAPK/NF-κB pathways. Moreover, sericin exhibits angiogenic activity by promoting migration and tubular formation of human umbilical vessel endothelial cells (HUVECs). Also, sericin stimulates VEGFa expression via activating ERK phosphorylation. Further, sericin protects endothelial cells and cardiomyocytes from apoptosis by inhibiting the activation of caspase 3. Together, these diverse biochemical activities of sericin protein lead to a significant recovery of cardiac function. This work represents the first study reporting sericin as an effective therapeutic biomaterial for ischemic myocardial repair in vivo.. Intramyocardial biomaterial injection is thought to be a potential therapeutic approach to improve cardiac performance after ischemic myocardial infarction. In this study, we report the successful fabrication and in vivo application of an injectable sericin hydrogel for ischemic heart disease. We for the first time show that the injection of in situ forming crosslinked sericin hydrogel promotes heart functional recovery accompanied with reduced inflammatory responses, attenuated apoptosis and increased microvessel density in the infarcted hearts. Further, we reveal that the improvement in those aspects is ascribed to sericin protein's functional bioactivities that are comprehensively uncovered in this study. Thus, we identify sericin, a natural protein, as a biomaterial suitable for myocardial repair and demonstrate that the in vivo application of this injectable sericin hydrogel can be an effective strategy for treating MI. Topics: Animals; Apoptosis; Cell Movement; Cross-Linking Reagents; Cytokines; Cytoprotection; Fibrosis; Human Umbilical Vein Endothelial Cells; Hydrogel, Polyethylene Glycol Dimethacrylate; Inflammation; Injections; Iridoids; Male; MAP Kinase Signaling System; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocytes, Cardiac; Neovascularization, Physiologic; NIH 3T3 Cells; Rats; Recovery of Function; Sericins; Transcription, Genetic; Vascular Endothelial Growth Factor A | 2016 |
Oleuropein prevents the progression of steatohepatitis to hepatic fibrosis induced by a high-fat diet in mice.
Nonalcoholic steatohepatitis (NASH) is characterized by hepatocyte injury and inflammatory cell infiltration, which has been linked to peripheral insulin resistance and increased levels of triglycerides in the liver. The purposes of this study were to establish a mouse model of NASH by feeding mice a 60% high-fat diet (HFD) and to demonstrate the anti-fibrotic effects of oleuropein, which has been shown to have anti-oxidant and anti-inflammatory properties, in this HFD-induced mouse model of NASH. C57BL/6 mice were divided into three groups: a regular diet group (Chow), a HFD group and an oleuropein-supplemented HFD group (OSD), which was fed a 0.05% OSD for 6 months. The effects of oleuropein in this model were evaluated using biochemical, histological and molecular markers. The expression levels of alpha-smooth muscle actin (α-SMA)and collagen type I in the HFD and OSD groups were evaluated using real-time PCR and western blotting. The body weight, biochemical marker levels, nonalcoholic fatty liver disease activity score, homeostasis model of assessment-insulin resistance (HOMA-IR) and leptin levels observed in the HFD group at 9 and 12 months were higher than those observed in the Chow group. The HOMA-IR and leptin levels in the OSD group were decreased compared with the HFD group. In addition, α-SMA and collagen type I expression were decreased by oleuropein treatment. We established a NASH model induced by HFD and demonstrated that this model exhibits the histopathological features of NASH progressing to fibrosis. Our results suggest that oleuropein may be pharmacologically useful in preventing the progression of steatohepatitis and fibrosis and may be a promising agent for the treatment of NASH in humans. Topics: Actins; Animals; Antihypertensive Agents; Collagen Type I; Diet, High-Fat; Fatty Liver; Fibrosis; Iridoid Glucosides; Iridoids; Leptin; Liver; Mice; Mice, Inbred C57BL | 2014 |
A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-β1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis.
Mitochondria dysfunction has been reported in various kidney diseases but how it leads to kidney fibrosis and how this is regulated is unknown. Here we found that mitochondrial uncoupling protein 2 (UCP2) was induced in kidney tubular epithelial cells after unilateral ureteral obstruction in mice and that mice with ablated UCP2 resisted obstruction-induced kidney fibrosis. We tested this association further in cultured NRK-52E cells and found that TGF-β1 remarkably induced UCP2 expression. Knockdown of UCP2 largely abolished the effect of TGF-β1, whereas overexpression of UCP2 promoted tubular cell phenotype changes. Analysis using a UCP2 mRNA-3'-untranslated region luciferase construct showed that UCP2 mRNA is a direct target of miR-30e. MiR-30e was downregulated in tubular cells from fibrotic kidneys and TGF-β1-treated NRK-52E cells. A miR-30e mimic significantly inhibited TGF-β1-induced tubular-cell epithelial-mesenchymal transition, whereas a miR-30e inhibitor imitated TGF-β1 effects. Finally, genipin, an aglycone UCP2 inhibitor, significantly ameliorated kidney fibrosis in mice. Thus, the miR-30e/UCP2 axis has an important role in mediating TGF-β1-induced epithelial-mesenchymal transition and kidney fibrosis. Targeting this pathway may shed new light for the future of fibrotic kidney disease therapy. Topics: Animals; Cell Line; Disease Models, Animal; Epithelial Cells; Epithelial-Mesenchymal Transition; Extracellular Matrix; Fibrosis; Humans; Ion Channels; Iridoids; Kidney Diseases; Kidney Tubules; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; MicroRNAs; Mitochondrial Proteins; Rats; Recombinant Proteins; RNA Interference; Signal Transduction; Time Factors; Transfection; Transforming Growth Factor beta1; Uncoupling Protein 2; Ureteral Obstruction | 2013 |
Phenolic secoiridoids in extra virgin olive oil impede fibrogenic and oncogenic epithelial-to-mesenchymal transition: extra virgin olive oil as a source of novel antiaging phytochemicals.
The epithelial-to-mesenchymal transition (EMT) genetic program is a molecular convergence point in the life-threatening progression of organ fibrosis and cancer toward organ failure and metastasis, respectively. Here, we employed the EMT process as a functional screen for testing crude natural extracts for accelerated drug development in fibrosis and cancer. Because extra virgin olive oil (EVOO) (i.e., the juice derived from the first cold pressing of the olives without any further refining process) naturally contains high levels of phenolic compounds associated with the health benefits derived from consuming an EVOO-rich Mediterranean diet, we have tested the ability of an EVOO-derived crude phenolic extract to regulate fibrogenic and oncogenic EMT in vitro. High-performance liquid chromatography (HPLC) coupled to time-of-flight (TOF) mass spectrometry assays revealed that the EVOO phenolic extract was mainly composed (∼70%) of two members of the secoiridoid family of complex polyphenols, namely oleuropein aglycone-the bitter principle of olives-and its derivative decarboxymethyl oleuropein aglycone. EVOO secoiridoids efficiently prevented loss of proteins associated with polarized epithelial phenotype (i.e., E-cadherin) as well as de novo synthesis of proteins associated with mesenchymal migratory morphology of transitioning cells (i.e., vimentin). The ability of EVOO to impede transforming growth factor-β (TGF-β)-induced disintegration of E-cadherin-mediated cell-cell contacts apparently occurred as a consequence of the ability of EVOO phenolics to prevent the upregulation of SMAD4-a critical mediator of TGF-β signaling-and of the SMAD transcriptional cofactor SNAIL2 (Slug)-a well-recognized epithelial repressor. Indeed, EVOO phenolics efficiently prevented crucial TGF-β-induced EMT transcriptional events, including upregulation of SNAI2, TCF4, VIM (Vimentin), FN (fibronectin), and SERPINE1 genes. While awaiting a better mechanistic understanding of how EVOO phenolics molecularly shut down the EMT differentiation process, it seems reasonable to suggest that nontoxic Oleaceae secoiridoids certainly merit to be considered for aging studies and, perhaps, for ulterior design of more pharmacologically active second-generation anti-EMT molecules. Topics: Aging; Animals; Anticarcinogenic Agents; Cell Line; Cell Line, Tumor; Chromatography, High Pressure Liquid; Diet; Dogs; Epithelial-Mesenchymal Transition; Fibrosis; Humans; Iridoids; Mass Spectrometry; Microscopy, Fluorescence; Neoplasm Metastasis; Olive Oil; Phenol; Phenols; Plant Oils; Real-Time Polymerase Chain Reaction | 2012 |
Gelatin microspheres encapsulated with a nonpeptide angiogenic agent, ginsenoside Rg1, for intramyocardial injection in a rat model with infarcted myocardium.
Angiogenic therapies may need to select a stable agent to be delivered. In the study, a nonpeptide angiogenic agent, ginsenoside Rg(1) (Rg(1)), was encapsulated in the gelatin microspheres (MSs) crosslinked with genipin and intramuscularly injected into a rat model with infarcted myocardium. bFGF was used as a control. After swelling in an aqueous environment, the MSs without crosslinking became collapsed and stuck together. For those crosslinked, the swollen MSs appeared to be more stable with an increasing the degree of crosslinking. After it was released from MSs in vitro, the remaining activity of bFGF on HUVEC proliferation reduced significantly, while that of Rg(1) remained constant. An inspection of the retrieved hearts revealed a large aneurysmal left ventricle (LV) with a thinned myocardium and a significant myocardial fibrosis for that treated with the Empty MSs (without drug encapsulation). However, those receiving the MSs encapsulated with bFGF or Rg(1) attenuated the enlargement of the LV cavity and the development of myocardial fibrosis. The densities of microvessels found in the border zones of the infarct treated with the bFGF or Rg(1) MSs were significantly greater than that treated with the Empty MSs. These results indicated that Rg(1), a stable angiogenic agent, successfully enhanced the myocardial perfusion and preserved the infarcted LV function. Topics: Angiogenesis Inducing Agents; Animals; Cell Proliferation; Cells, Cultured; Chemistry, Pharmaceutical; Coronary Circulation; Cross-Linking Reagents; Disease Models, Animal; Drug Carriers; Drug Compounding; Endothelial Cells; Feasibility Studies; Fibroblast Growth Factor 2; Fibrosis; Gelatin; Ginsenosides; Humans; Injections, Intramuscular; Iridoid Glycosides; Iridoids; Male; Microspheres; Myocardial Infarction; Neovascularization, Physiologic; Particle Size; Rats; Rats, Sprague-Dawley; Solubility; Time Factors; Ventricular Function, Left; Ventricular Remodeling | 2007 |