iridoids and Cell-Transformation--Neoplastic

iridoids has been researched along with Cell-Transformation--Neoplastic* in 2 studies

Other Studies

2 other study(ies) available for iridoids and Cell-Transformation--Neoplastic

ArticleYear
Xenohormetic and anti-aging activity of secoiridoid polyphenols present in extra virgin olive oil: a new family of gerosuppressant agents.
    Cell cycle (Georgetown, Tex.), 2013, Feb-15, Volume: 12, Issue:4

    Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR. The occurrence of age-related diseases, therefore, reflects the synergistic interaction between our evolutionary path to sedentarism, which chronically increases a number of mTOR activating gero-promoters (e.g., food, growth factors, cytokines and insulin) and the "defective design" of central metabolic integrators such as mTOR and AMPK. Our laboratories at the Bioactive Food Component Platform in Spain have initiated a systematic approach to molecularly elucidate and clinically explore whether the "xenohormesis hypothesis," which states that stress-induced synthesis of plant polyphenols and many other phytochemicals provides an environmental chemical signature that upregulates stress-resistance pathways in plant consumers, can be explained in terms of the reactivity of the AMPK/mTOR-axis to so-called xenohormetins. Here, we explore the AMPK/mTOR-xenohormetic nature of complex polyphenols naturally present in extra virgin olive oil (EVOO), a pivotal component of the Mediterranean style diet that has been repeatedly associated with a reduction in age-related morbid conditions and longer life expectancy. Using crude EVOO phenolic extracts highly enriched in the secoiridoids oleuropein aglycon and decarboxymethyl oleuropein aglycon, we show for the first time that (1) the anticancer activity of EVOO secoiridoids is related to the activation of anti-aging/cellular stress-like gene signatures, including endoplasmic reticulum (ER) stress and the unfolded protein response, spermidine and polyamine metabolism, sirtuin-1 (SIRT1) and NRF2 signaling; (2) EVOO secoiridoids activate AMPK and suppress crucial genes involved in the Warburg effect and the self-renewal capacity of "immortal" cancer stem cells; (3) EVOO secoiridoids prevent age-related changes in the cell size, morphological heterogeneity, arrayed cell arrangement and senescence-associated β-galactosidase staining of normal diploid human fibroblasts at the end of their proliferative lifespans. EVOO secoiridoids, which provide an effective defense against plant attack by herbivores and pathogens, are bona fide xenohormetins that are able to activate the gerosuppressor AMPK and trigger numerous resveratrol-like anti-ag

    Topics: Aging; AMP-Activated Protein Kinase Kinases; Animals; beta-Galactosidase; Cell Transformation, Neoplastic; Diet, Mediterranean; Endoplasmic Reticulum Stress; Fibroblasts; Gene Expression Regulation; Hormesis; Humans; Iridoids; Longevity; Olive Oil; Plant Oils; Polyphenols; Protein Kinases; Sirtuin 1; TOR Serine-Threonine Kinases; Unfolded Protein Response

2013
Extra-virgin olive oil polyphenols inhibit HER2 (erbB-2)-induced malignant transformation in human breast epithelial cells: relationship between the chemical structures of extra-virgin olive oil secoiridoids and lignans and their inhibitory activities on
    International journal of oncology, 2009, Volume: 34, Issue:1

    Depending on their structure, some polyphenols (e.g. flavonoids) abundantly found in plant-derived beverages such as green tea can efficiently inhibit tyrosine kinase and serine/threonine kinase activities. Extra-virgin olive oil (EVOO - the juice of the olive obtained solely by pressing and consumed without any further refining process) is unique among other vegetable oils because of the high level of naturally occurring phenolic compounds. We explored the ability of EVOO polyphenols to modulate HER2 tyrosine kinase receptor-induced in vitro transformed phenotype in human breast epithelial cells. Using MCF10A normal breast epithelial cells retrovirally engineered to overexpress the wild-type sequence of human HER2, we further determined the relationship between chemical structures of EVOO-derived phenolics and their inhibitory activities on the tyrosine kinase activity of the HER2 oncoprotein. When the activation (phosphorylation) status of HER2 was semi-quantitatively measured the secoiridoids blocked HER2 signaling by rapidly reducing the activation status of the 1248 tyrosine residue (Y1248), the main autophosphorylation site of HER2. EVOO-derived single phenols tyrosol and hydroxytyrosol and the phenolic acid elenolic acid failed to significantly decrease HER2 tyrosine kinase activity. The anti-HER2 tyrosine kinase activity IC50 values were up to 5-times lower in the presence of EVOO-derived lignans and secoiridoids than in the presence of EVOO-derived single phenols and phenolic acids. EVOO polyphenols induced strong tumoricidal effects by selectively triggering high levels of apoptotic cell death in HER2-positive MCF10A/HER2 cells but not in MCF10A/pBABE matched control cells. EVOO lignans and secoiridoids prevented HER2-induced in vitro transformed phenotype as they inhibited colony formation of MCF10A/HER2 cells in soft-agar. Our current findings not only molecularly support recent epidemiological evidence revealing that EVOO-related anti-breast cancer effects primarily affect the occurrence of breast tumors over-expressing the type I receptor tyrosine kinase HER2 but further suggest that the stereochemistry of EVOO-derived lignans and secoiridoids might provide an excellent and safe platform for the design of new HER2 targeted anti-breast cancer drugs.

    Topics: Apoptosis; Breast; Cell Transformation, Neoplastic; Cells, Cultured; Colony-Forming Units Assay; Enzyme-Linked Immunosorbent Assay; Flavonoids; Humans; Iridoids; Lignans; Olive Oil; Phenols; Plant Oils; Polyphenols; Protein-Tyrosine Kinases; Receptor, ErbB-2; Retroviridae

2009