iodoresiniferatoxin and Disease-Models--Animal

iodoresiniferatoxin has been researched along with Disease-Models--Animal* in 7 studies

Other Studies

7 other study(ies) available for iodoresiniferatoxin and Disease-Models--Animal

ArticleYear
N-palmitoylethanolamide in the anterior cingulate cortex attenuates inflammatory pain behaviour indirectly via a CB1 receptor-mediated mechanism.
    Pain, 2016, Volume: 157, Issue:12

    The neural substrates and mechanisms mediating the antinociceptive effects of the endogenous bioactive lipid, N-palmitoylethanolamide (PEA), require further investigation. We investigated the effects of exogenous PEA administration into the anterior cingulate cortex (ACC), an important brain region linked with cognitive and affective modulation of pain, on formalin-evoked nociceptive behaviour in rats. Potential involvement of peroxisome proliferator-activated receptor isoforms (PPAR) α and γ or endocannabinoid-mediated entourage effects at cannabinoid1 (CB1) receptors or transient receptor potential subfamily V member 1 (TRPV1) in mediating the effects of PEA was also investigated. Intra-ACC administration of PEA significantly attenuated the first and early second phases of formalin-evoked nociceptive behaviour. This effect was attenuated by the CB1 receptor antagonist AM251, but not by the PPARα antagonist GW6471, the PPARγ antagonist GW9662, or the TRPV1 antagonist 5'-iodo resiniferatoxin. All antagonists, administered alone, significantly reduced formalin-evoked nociceptive behaviour, suggesting facilitatory/permissive roles for these receptors in the ACC in inflammatory pain. Post-mortem tissue analysis revealed a strong trend for increased levels of the endocannabinoid anandamide in the ACC of rats that received intra-ACC PEA. Expression of c-Fos, a marker of neuronal activity, was significantly reduced in the basolateral nucleus of the amygdala, but not in the central nucleus of the amygdala, the rostral ventromedial medulla or the dorsal horn of the spinal cord. In conclusion, these data indicate that PEA in the ACC can reduce inflammatory pain-related behaviour, possibly via AEA-induced activation of CB1 receptors and associated modulation of neuronal activity in the basolateral amygdala.

    Topics: Amides; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cannabinoid Receptor Antagonists; Cohort Studies; Disease Models, Animal; Diterpenes; Ethanolamines; Fixatives; Formaldehyde; Gyrus Cinguli; Locomotion; Male; Microdissection; Microinjections; Pain; Pain Measurement; Palmitic Acids; PPAR gamma; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1

2016
Differential regulation of peripheral IL-1β-induced mechanical allodynia and thermal hyperalgesia in rats.
    Pain, 2014, Volume: 155, Issue:4

    This study examined the differential mechanisms of mechanical allodynia and thermal hyperalgesia after injection of interleukin (IL) 1β into the orofacial area of male Sprague-Dawley rats. The subcutaneous administration of IL-1β produced both mechanical allodynia and thermal hyperalgesia. Although a pretreatment with iodoresiniferatoxin (IRTX), a transient receptor potential vanilloid 1 (TRPV1) antagonist, did not affect IL-1β-induced mechanical allodynia, it significantly abolished IL-1β-induced thermal hyperalgesia. On the other hand, a pretreatment with D-AP5, an N-methyl-d-aspartate (NMDA) receptor antagonist, and NBQX, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, blocked IL-1β-induced mechanical allodynia. Pretreatment with H89, a protein kinase A (PKA) inhibitor, blocked IL-1β-induced mechanical allodynia but not thermal hyperalgesia. In contrast, pretreatment with chelerythrine, a protein kinase C (PKC) inhibitor, inhibited IL-1β-induced thermal hyperalgesia. Subcutaneous injections of 2% lidocaine, a local anesthetic agent, blocked IL-1β-induced thermal hyperalgesia but not IL-1β-induced mechanical allodynia. In the resiniferatoxin (RTX)-pretreated rats, a subcutaneous injection of IL-1β did not produce thermal hyperalgesia due to the depletion of TRPV1 in the primary afferent fibers. Double immunofluorescence revealed the colocalization of PKA with neurofilament 200 (NF200) and of PKC with the calcitonin gene-related peptide (CGRP) in the trigeminal ganglion. Furthermore, NMDA receptor 1 (NR1) and TRPV1 predominantly colocalize with PKA and PKC, respectively, in the trigeminal ganglion. These results suggest that IL-1β-induced mechanical allodynia is mediated by sensitized peripheral NMDA/AMPA receptors through PKA-mediated signaling in the large-diameter primary afferent nerve fibers, whereas IL-1β-induced thermal hyperalgesia is mediated by sensitized peripheral TRPV1 receptors through PKC-mediated signaling in the small-diameter primary afferent nerve fibers.

    Topics: 2-Amino-5-phosphonovalerate; Animals; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Gene Expression Regulation; Hyperalgesia; Interleukin-1beta; Male; Nerve Tissue Proteins; Pain Threshold; Physical Stimulation; Quinoxalines; Rats; Rats, Sprague-Dawley; Trigeminal Ganglion

2014
Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2014, Nov-12, Volume: 34, Issue:46

    Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress.

    Topics: Action Potentials; Animals; Calcium; Capsaicin; Cell Survival; Disease Models, Animal; Diterpenes; Dopamine; Glaucoma; Intraocular Pressure; Mice; Mice, Knockout; Primary Cell Culture; Retinal Ganglion Cells; Stress, Physiological; TRPV Cation Channels

2014
Reduction of bone cancer pain by CB1 activation and TRPV1 inhibition.
    Journal of anesthesia, 2010, Volume: 24, Issue:2

    Topics: Animals; Bone Neoplasms; Disease Models, Animal; Diterpenes; Humans; Mice; Pain; Pain Management; Receptor, Cannabinoid, CB1; TRPV Cation Channels

2010
Chronic femoral artery occlusion augments exercise pressor reflex in decerebrated rats.
    American journal of physiology. Heart and circulatory physiology, 2010, Volume: 299, Issue:1

    In decerebrated rats, we determined the pressor and cardioaccelerator reflex responses to static contraction of hindlimb muscles whose femoral arteries were either occluded 72 h before contraction, occluded 3 min before contraction, or freely perfused. We found that the pressor reflex arising from the limb whose femoral artery was occluded for 72 h before contraction (32 +/- 5 mmHg, n = 16) was significantly higher than the pressor reflex arising from the contralateral freely perfused limb (15 +/- 3 mmHg, n = 16, P < 0.001) or than that arising from the contralateral limb whose femoral artery was occluded for only 3 min (17 +/- 4 mmHg, n = 16, P < 0.001). Moreover, the pressor reflex arising from the limb whose femoral artery was occluded for 3 min before the start of contraction was not significantly different than that arising from the contralateral freely perfused limb (n = 16, P = 0.819). The pressor component of the reflex arising from the limb whose femoral artery was occluded for 72 h was not changed by transient receptor potential vanilloid (TRPV) 1 receptor blockade with iodo-resiniferatoxin (n = 15, P = 0.272), although the cardioaccelerator component was significantly reduced (P = 0.005). In addition, the pressor response evoked by capsaicin injection in the femoral artery of the 72-h occluded limb was more than double that evoked from the freely perfused limb (P = 0.026). We conclude that chronic (i.e., 72 h) but not acute (3 min), femoral arterial occlusion augments pressor reflex arising from contraction of hindlimb muscles and that TRPV1 receptors play little role in this augmentation.

    Topics: Animals; Arterial Occlusive Diseases; Baroreflex; Blood Pressure; Capsaicin; Chronic Disease; Constriction, Pathologic; Decerebrate State; Disease Models, Animal; Diterpenes; Femoral Artery; Heart Rate; Hindlimb; Ischemia; Ligation; Male; Muscle Contraction; Muscle, Skeletal; Physical Exertion; Rats; Rats, Sprague-Dawley; Regional Blood Flow; Sensory System Agents; Time Factors; TRPV Cation Channels

2010
The vanilloid receptor initiates and maintains colonic hypersensitivity induced by neonatal colon irritation in rats.
    Gastroenterology, 2007, Volume: 132, Issue:2

    Robust chemical or mechanical irritation of the colon of neonatal rats leads to chronic visceral hypersensitivity. The clinical and physiologic relevance of such noxious stimulation in the context of human irritable bowel syndrome is questionable. The aims of this study were to determine whether mild chemical irritation of the colon of neonatal rats produced persistent changes in visceral sensitivity and to evaluate the role of transient receptor potential vanilloid 1 (TRPV1) in the initiation and maintenance of visceral hypersensitivity.. Ten-day-old rat pups received an intracolonic infusion of 0.5% acetic acid in saline. TRPV1 inhibitors were administered 30 minutes before acetic acid sensitization. Sensitivity of the colon to balloon distention (CRD) in adults was measured by grading their abdominal withdrawal reflex and electromyographic responses. In adult rats, TRPV1 antagonist was injected intraperitoneally 30 minutes before CRD.. Neonatal acetic acid treatment resulted in higher sensitivity to CRD in adult rats compared with controls in the absence of histopathologic signs of inflammation. Treatment of colons of adult rats with acetic acid did not produce persistent sensitization. Antagonism of the TRPV1 before neonatal administration of acetic acid and after established visceral hypersensitivity attenuated sensitivity to CRD. TRPV1 expression was increased in dorsal root ganglia-containing colon afferent neurons.. We have described a new model for persistent colonic sensory dysfunction following a transient noxious stimulus in the neonatal period and a potentially important role for TRPV1 in initiation and maintenance of persistent visceral hypersensitivity.

    Topics: Acetic Acid; Age Factors; Anilides; Animals; Animals, Newborn; Capsaicin; Catheterization; Cinnamates; Colon; Disease Models, Animal; Diterpenes; Electromyography; Ganglia, Spinal; Hyperalgesia; Irritable Bowel Syndrome; Male; Pain; Rats; Rats, Sprague-Dawley; Reflex, Abdominal; TRPV Cation Channels; Visceral Afferents

2007
Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naïve, carrageenan-inflamed and neuropathic rats.
    The European journal of neuroscience, 2005, Volume: 22, Issue:2

    The vanilloid TRPV1 receptor, present on primary afferent fibres, is activated by noxious heat, low pH and endogenous vanilloids. Changes in the function or distribution of TRPV1 receptors may play an important role in pain induced by inflammation or neuropathy. The aim of the present study was to evaluate the role of peripheral TRPV1 receptors in thermal nociception in rat models of inflammatory and neuropathic pain. Here, we have determined the effects of peripheral administration of the potent TRPV1 receptor antagonist iodoresiniferatoxin (IRTX) on noxious heat (45 degrees C)-evoked responses of spinal wide dynamic range (WDR) neurons in naïve, carrageenan-inflamed, sham-operated and L5/6 spinal nerve-ligated (SNL) anaesthetized rats in vivo. In addition, effects of peripheral administration of IRTX on mechanically evoked responses of WDR neurons were determined in sham-operated and SNL rats. Carrageenan inflammation significantly (P<0.05) increased the 45 degrees C-evoked responses of WDR neurons. Intraplantar injection of the lower dose of IRTX (0.004 microg) inhibited (P<0.05) 45 degrees C-evoked responses of WDR neurons in carrageenan-inflamed, but not in naïve, rats. The higher dose of IRTX (0.4 microg) significantly (P<0.05) inhibited 45 degrees C-evoked responses in both inflamed and naïve rats. In sham-operated and SNL rats, IRTX (0.004 and 0.4 microg) significantly (P<0.05) inhibited 45 degrees C-evoked, but had no effect on mechanically evoked responses of WDR neurons. These data support the role of peripheral TRPV1 receptors in noxious thermal transmission in naïve, inflamed and neuropathic rats, and suggest that there is an increased functional contribution of peripheral TRPV1 receptors following acute inflammation.

    Topics: Animals; Carrageenan; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; Drug Interactions; Evoked Potentials; Hot Temperature; Hyperalgesia; Inflammation; Ion Channels; Ligation; Male; Neuralgia; Nociceptors; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Spinal Nerves; Statistics, Nonparametric; Time Factors; TRPV Cation Channels

2005