interleukin-8 has been researched along with Medulloblastoma* in 3 studies
3 other study(ies) available for interleukin-8 and Medulloblastoma
Article | Year |
---|---|
Thymoquinone inhibits growth of human medulloblastoma cells by inducing oxidative stress and caspase-dependent apoptosis while suppressing NF-κB signaling and IL-8 expression.
Medulloblastoma (MB) is the most common malignant brain tumor of childhood. The transcription factor NF-κB is overexpressed in human MB and is a critical factor for MB tumor growth. NF-κB is known to regulate the expression of interleukin-8 (IL-8), the chemokine that enhances cancer cell growth and resistance to chemotherapy. We have recently shown that thymoquinone (TQ) suppresses growth of hepatocellular carcinoma cells in part by inhibiting NF-κB signaling. Here we sought to extend these studies in MB cells and show that TQ suppresses growth of MB cells in a dose- and time-dependent manner, causes G2M cell cycle arrest, and induces apoptosis. TQ significantly increased generation of reactive oxygen species (ROS), while pretreatment of MB cells with the ROS scavenger N-acetylcysteine (NAC) abrogated TQ-induced cell death and apoptosis, suggesting that TQ-induced cell death and apoptosis are oxidative stress-mediated. TQ inhibitory effects were associated with inhibition of NF-κB and altered expression of its downstream effectors IL-8 and its receptors, the anti-apoptotic Bcl-2, Bcl-xL, X-IAP, and FLIP, as well as the pro-apoptotic TRAIL-R1, caspase-8, caspase-9, Bcl-xS, and cytochrome c. TQ-triggered apoptosis was substantiated by up-regulation of the executioner caspase-3 and caspase-7, as well as cleavage of the death substrate poly(ADP-ribose)polymerase. Interestingly, pretreatment of MB cells with NAC or the pan-caspase inhibitor zVAD-fmk abrogated TQ-induced apoptosis, loss of cyclin B1 and NF-κB activity, suggesting that these TQ-mediated effects are oxidative stress- and caspase-dependent. These findings reveal that TQ induces both extrinsic and intrinsic pathways of apoptosis in MB cells, and suggest its potential usefulness in the treatment of MB. Topics: Apoptosis; Benzoquinones; Caspases; Cell Line, Tumor; Gene Expression Regulation, Neoplastic; Humans; Interleukin-8; Medulloblastoma; Neoplasm Proteins; NF-kappa B; Oxidative Stress; Signal Transduction | 2016 |
Synergism between Hedgehog-GLI and EGFR signaling in Hedgehog-responsive human medulloblastoma cells induces downregulation of canonical Hedgehog-target genes and stabilized expression of GLI1.
Aberrant activation of Hedgehog (HH) signaling has been identified as a key etiologic factor in many human malignancies. Signal strength, target gene specificity, and oncogenic activity of HH signaling depend profoundly on interactions with other pathways, such as epidermal growth factor receptor-mediated signaling, which has been shown to cooperate with HH/GLI in basal cell carcinoma and pancreatic cancer. Our experimental data demonstrated that the Daoy human medulloblastoma cell line possesses a fully inducible endogenous HH pathway. Treatment of Daoy cells with Sonic HH or Smoothened agonist induced expression of GLI1 protein and simultaneously prevented the processing of GLI3 to its repressor form. To study interactions between HH- and EGF-induced signaling in greater detail, time-resolved measurements were carried out and analyzed at the transcriptomic and proteomic levels. The Daoy cells responded to the HH/EGF co-treatment by downregulating GLI1, PTCH, and HHIP at the transcript level; this was also observed when Amphiregulin (AREG) was used instead of EGF. We identified a novel crosstalk mechanism whereby EGFR signaling silences proteins acting as negative regulators of HH signaling, as AKT- and ERK-signaling independent process. EGFR/HH signaling maintained high GLI1 protein levels which contrasted the GLI1 downregulation on the transcript level. Conversely, a high-level synergism was also observed, due to a strong and significant upregulation of numerous canonical EGF-targets with putative tumor-promoting properties such as MMP7, VEGFA, and IL-8. In conclusion, synergistic effects between EGFR and HH signaling can selectively induce a switch from a canonical HH/GLI profile to a modulated specific target gene profile. This suggests that there are more wide-spread, yet context-dependent interactions, between HH/GLI and growth factor receptor signaling in human malignancies. Topics: Biomarkers, Tumor; Blotting, Western; Carrier Proteins; Cell Proliferation; Cells, Cultured; Cerebellar Neoplasms; Cyclohexylamines; Dermis; Drug Synergism; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; ErbB Receptors; Fibroblasts; Gene Expression Profiling; Hedgehog Proteins; HEK293 Cells; Humans; Interleukin-8; Matrix Metalloproteinase 7; Medulloblastoma; Membrane Glycoproteins; Oligonucleotide Array Sequence Analysis; Patched Receptors; Patched-1 Receptor; Phosphorylation; Protein Array Analysis; Real-Time Polymerase Chain Reaction; Receptors, Cell Surface; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Thiophenes; Transcription Factors; Vascular Endothelial Growth Factor A; Veratrum Alkaloids; Zinc Finger Protein GLI1 | 2013 |
DNA methylation profiling of medulloblastoma allows robust subclassification and improved outcome prediction using formalin-fixed biopsies.
Molecular subclassification is rapidly informing the clinical management of medulloblastoma. However, the disease remains associated with poor outcomes and therapy-associated late effects, and the majority of patients are not characterized by a validated prognostic biomarker. Here, we investigated the potential of epigenetic DNA methylation for disease subclassification, particularly in formalin-fixed biopsies, and to identify biomarkers for improved therapeutic individualization. Tumor DNA methylation profiles were assessed, alongside molecular and clinical disease features, in 230 patients primarily from the SIOP-UKCCSG PNET3 clinical trial. We demonstrate by cross-validation in frozen training and formalin-fixed test sets that medulloblastoma comprises four robust DNA methylation subgroups (termed WNT, SHH, G3 and G4), highly related to their transcriptomic counterparts, and which display distinct molecular, clinical and pathological disease characteristics. WNT patients displayed an expected favorable prognosis, while outcomes for SHH, G3 and G4 were equivalent in our cohort. MXI1 and IL8 methylation were identified as novel independent high-risk biomarkers in cross-validated survival models of non-WNT patients, and were validated using non-array methods. Incorporation of MXI1 and IL8 into current survival models significantly improved the assignment of disease risk; 46 % of patients could be classified as 'favorable risk' (>90 % survival) compared to 13 % using current models, while the high-risk group was reduced from 30 to 16 %. DNA methylation profiling enables the robust subclassification of four disease subgroups in frozen and routinely collected/archival formalin-fixed biopsy material, and the incorporation of DNA methylation biomarkers can significantly improve disease-risk stratification. These findings have important implications for future risk-adapted clinical disease management. Topics: Adolescent; Adult; Basic Helix-Loop-Helix Transcription Factors; Biomarkers, Tumor; Biopsy; Cerebellar Neoplasms; Child; Child, Preschool; Chromosomes, Human, Pair 17; Cohort Studies; Computational Biology; DNA Fingerprinting; DNA Methylation; Female; Formaldehyde; Frozen Sections; Gene Expression Regulation, Neoplastic; Hedgehog Proteins; Humans; Infant; Interleukin-8; Male; Medulloblastoma; Predictive Value of Tests; Proto-Oncogene Proteins c-myc; Reproducibility of Results; Tumor Suppressor Proteins; Young Adult | 2013 |