interleukin-8 and Disease-Resistance

interleukin-8 has been researched along with Disease-Resistance* in 7 studies

Other Studies

7 other study(ies) available for interleukin-8 and Disease-Resistance

ArticleYear
SCFAs improve disease resistance via modulate gut microbiota, enhance immune response and increase antioxidative capacity in the host.
    Fish & shellfish immunology, 2022, Volume: 120

    To evaluate the effects of dietary short chain fatty acids (SCFAs) on the intestinal health and innate immunity in crucian carp, a six-week feeding trial was carried out with following treatments: basal diet (BD), basal diet supplementation with 1% sodium acetate (BDSA), basal diet supplementation with 1% sodium propionate (BDSP) and basal diet supplementation with 1% sodium butyrate (BDSB). The results showed dietary BDSA, BDSP and BDSB could protect the host against oxidative stress by improving the activity of certain antioxidative enzymes (T-SOD, GSH-Px and CAT). Additionally, dietary SCFAs could enhance mucosal and humoral immune responses by improving certain innate immune parameters in serum and skin mucus productions (IgM, ACH50 and T-SOD). Furthermore, dietary BDSA and BDSP could up-regulate the expression of immune related genes (TNF-α, TGF-β and IL-8) and tight junction protein genes (occludin and ZO-1). Dietary BDSB could also elevate the expression of IL-8, TGF-β, ZO-1 and Occludin in the midgut. Although dietary differences of SCFAs didn't alter the α-diversity of the intestinal flora, they altered the core microbiota. Finally, the challenge trial showed that dietary basal diet supplementation with SCFAs could protect zebrafish against Aeromonas hydrophila. These results suggest that dietary SCFAs could improve innate immunity, modulate gut microbiota and increase disease resistance in the host, which indicated the potential of SCFAs as immunostimulants in aquaculture.

    Topics: Aeromonas hydrophila; Animal Feed; Animals; Antioxidants; Diet; Dietary Supplements; Disease Resistance; Fatty Acids, Volatile; Fish Diseases; Gastrointestinal Microbiome; Gram-Negative Bacterial Infections; Interleukin-8; Occludin; Superoxide Dismutase; Transforming Growth Factor beta; Zebrafish

2022
Immunomulation effect of alginic acid and chitooligosaccharides in silver carp (Hypophthalmichthys molitrix).
    Fish & shellfish immunology, 2022, Volume: 128

    Individual and combined efficacy of chitooligosaccharides (COS) and alginic acid (AA) at 1 g, 2 g, and 3 g per kg diet was assessed on growth and disease resistance in silver carp (Hypophthalmichthys molitrix) against Edwardsiella ictaluri. Growth parameters including specific growth rate (SGR), weight gain (WG), and feed conversion rate (FCR) were significant in fish fed 2 g and 3 g kg

    Topics: Abortifacient Agents; Alginic Acid; Amylases; Animal Feed; Animals; Antioxidants; Carps; Chitosan; Diet; Dietary Supplements; Disease Resistance; Fish Diseases; Glutathione Peroxidase; Interleukin-10; Interleukin-8; Lipase; Malondialdehyde; Muramidase; Nitric Acid; Oligosaccharides; Reactive Oxygen Species; RNA, Messenger; Superoxide Dismutase

2022
Study of the Relationship between Polymorphisms in the
    Genes, 2020, 04-27, Volume: 11, Issue:5

    Interleukin 8 (IL-8) participates in the immune response and has the function of inducing neutrophils to release lysosomal enzymes and eliminate pathogens. This study was to investigate the effect of single nucleotide mutations in the

    Topics: Animals; Chickens; Coccidiosis; Disease Resistance; Eimeria tenella; Gene Expression Regulation; Interleukin-8; Polymorphism, Single Nucleotide; Promoter Regions, Genetic

2020
Cxcl8-l1 and Cxcl8-l2 are required in the zebrafish defense against Salmonella Typhimurium.
    Developmental and comparative immunology, 2015, Volume: 49, Issue:1

    In recent years zebrafish has emerged as an excellent model for studying the Cxcl8 signaling pathway in inflammation elicited upon tissue damage or infection. Zebrafish has two true homologs of mammalian CXCL8, named Cxcl8-l1 and Cxcl8-l2. Previously, we have shown that in wound-associated inflammation, these chemokines are up-regulated and are relevant for neutrophil recruitment. In infections, no such knowledge is available as most studies performed on this subject in zebrafish have mainly focused on Cxcl8-l1 even though Cxcl8-l2 shares higher homology with human CXCL8. In this study, we aimed to address the biological function of both zfCxcl8s in infection to improve our understanding of their respective roles under different inflammatory conditions. Gene expression analysis first confirmed that both Cxcl8-l1 and l2 are induced upon infection or in PAMP-elicited inflammatory processes. In addition, we also found that cxcl8-deficient larvae show higher susceptibility to Salmonella enterica serovar Typhimurium (S. Typhimurium) infection, reduced neutrophil recruitment to the infection site assayed in the line Tg(mpx:gfp), and decreased bacterial clearance. These data indicate that both zebrafish Cxcl8s play important roles in neutrophil recruitment and in the inflammatory response elicited upon infection or tissue damage, suggesting that even though the divergence of lower vertebrates and humans from a common ancestor occurred about 450 millions years ago, the basic principles of neutrophil recruitment are apparently conserved in all vertebrates.

    Topics: Animals; Disease Resistance; Gene Expression; Gene Knockdown Techniques; Host-Pathogen Interactions; Interleukin-8; Larva; Microscopy, Fluorescence; Reverse Transcriptase Polymerase Chain Reaction; Salmonella typhimurium; Survival Analysis; Zebrafish; Zebrafish Proteins

2015
Chlorophytum borivilianum Polysaccharide Fraction Provokes the Immune Function and Disease Resistance of Labeo rohita against Aeromonas hydrophila.
    Journal of immunology research, 2015, Volume: 2015

    The present study aimed to investigate the effects of Chlorophytum borivilianum polysaccharide (CBP), as a dietary supplement administered at varying concentrations with feed (basal diet), on various cytokine-related responses in Labeo rohita fingerlings. Immune parameters and immune-related gene expressions were measured at 3rd, 4th, and 5th week after feeding. The results revealed that dietary administration of CBP at 0.2% and 0.4% for 4 weeks significantly upregulated serum lysozyme and phagocytic activity. Complement C3 and respiratory burst activity (RBA) were significantly higher after 4 weeks of CBP feeding. The immune related genes IL-8, IL-1β, TNF-α, and iNOS were downregulated (P < 0.05) in groups with 0.2% and 0.4% CBP supplemented diets at week 4. Expression of anti-inflammatory cytokines (IL-10 and TGF-β) was also downregulated (P < 0.5) after 4 weeks of feeding with 0.2% to 0.8% CBP. However, five weeks of CBP administration had no significant effect on immune gene expression, except TNF-α and IL-8. Fish fed with 0.4% CBP for 4 weeks showed maximum resistance against Aeromonas hydrophila (73.3% survival) compared to control. From these results, we recommend that CBP administration at 0.4% for 4 weeks could effectively improve immune response and disease resistance in L. rohita.

    Topics: Aeromonas hydrophila; Animal Feed; Animals; Complement C3; Cyprinidae; Dietary Supplements; Disease Resistance; Fish Diseases; Gene Expression Regulation; Gram-Negative Bacterial Infections; Immunity, Innate; Interleukin-10; Interleukin-1beta; Interleukin-8; Liliaceae; Muramidase; Nitric Oxide Synthase Type II; Phagocytosis; Polysaccharides; Respiratory Burst; Survival Analysis; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha

2015
Basal polarization of the mucosal compartment in Flavobacterium columnare susceptible and resistant channel catfish (Ictalurus punctatus).
    Molecular immunology, 2013, Volume: 56, Issue:4

    The freshwater bacterial pathogen, Flavobacterium columnare, infects a variety of ornamental and farmed fish species worldwide through mucosal attachment points on the gill and skin. While previous studies have demonstrated a chemotactic response of F. columnare to fish mucus, little is known about how host gill mucosal molecular and cellular constituents may impact rates of adhesion, tissue invasion, and ultimately, mortality. Here, we describe the use of RNA-seq to profile gill expression differences between channel catfish (Ictalurus punctatus) differing in their susceptibility to F. columnare both basally (before infection) and at three early timepoints post-infection (1 h, 2 h, and 8 h). After sequencing and de novo assembly of over 350 million 100 base-pair transcript reads, between group comparisons revealed 1714 unique genes differentially expressed greater than 1.5-fold at one or more timepoints. In the large dataset, we focused our analysis on basal differential expression between resistant and susceptible catfish as these genes could potentially reveal genetic and/or environmental factors linked with differential rates of infection. A number of critical innate immune components including iNOS2b, lysozyme C, IL-8, and TNF-alpha were constitutively higher in resistant catfish gill, while susceptible fish showed high expression levels of secreted mucin forms, a rhamnose-binding lectin previously linked to susceptibility, and mucosal immune factors such as CD103 and IL-17. Taken together, the immune and mucin profiles obtained by RNA-seq suggest a basal polarization in the gill mucosa, with susceptible fish possessing a putative mucosecretory, toleragenic phenotype which may predispose them to F. columnare infection.

    Topics: Animals; Disease Resistance; Fish Diseases; Fish Proteins; Flavobacterium; Gills; Host-Pathogen Interactions; Ictaluridae; Interleukin-8; Mucus; Muramidase; Nitric Oxide Synthase Type II; Reverse Transcriptase Polymerase Chain Reaction; Sequence Analysis, RNA; Time Factors; Transcriptome; Tumor Necrosis Factor-alpha

2013
Anti-HIV-1 activity of elafin depends on its nuclear localization and altered innate immune activation in female genital epithelial cells.
    PloS one, 2012, Volume: 7, Issue:12

    Elafin (E) and its precursor trappin-2 (Tr) are alarm antiproteases with antimicrobial and immunomodulatory activities. Tr and E (Tr/E) have been associated with HIV-1 resistance. We recently showed that Tr/E reduced IL-8 secretion and NF-κB activation in response to a mimic of viral dsRNA and contributed to anti-HIV activity of cervicovaginal lavage fluid (CVL) of HIV-resistant (HIV-R) commercial sex workers (CSWs). Additionally, Tr, and more so E, were found to inhibit attachment/entry and transcytosis of HIV-1 in human endometrial HEC-1A cells, acting through virus or cells. Given their immunomodulatory activity, we hypothesized that Tr/E could exert anti-HIV-1 activity at multiple levels. Here, using tagged and untagged Tr/E proteins, we comparatively evaluated their protease inhibitory, anti-HIV-1, and immunomodulatory activities, and cellular distribution. E appeared to function as an autocrine/paracrine factor in HEC-1A cells, and anti-HIV-1 activity of E depended on its unmodified N-terminus and altered cellular innate activation, but not its antiprotease activity. Specifically, exogenously added N-terminus-unmodified E was able to enter the nucleus and to reduce viral attachment/entry and transcytosis, preferentially affecting R5-HIV-1(ADA), but not X4-HIV-1(IIIB). Further, anti-HIV-1 activity of E was associated with significantly decreased HIV-1-triggered IL-8 release, attenuated NF-κB/p65 nuclear translocation, and significantly modulated mRNA expression of innate sensors TLR3 and RIG-I in HEC-1A cells. Most importantly, we found that elevated Tr/E in CVLs of HIV-R CSWs were associated with lower mRNA levels of TLRs 2, 3, 4 and RIG-I in the genital ECs from this cohort, suggesting a link between Tr/E, HIV-1 resistance and modulated innate viral recognition in the female genital mucosa. Collectively, our data indicate that unmodified N-terminus is critical for intranuclear localization and anti-HIV-1 activity of E. We also propose that E-mediated altered cellular innate activation most likely contributes to the HIV-R phenotype of these subjects.

    Topics: Cell Line, Tumor; Cell Nucleus; Cervix Uteri; DEAD Box Protein 58; DEAD-box RNA Helicases; Disease Resistance; Elafin; Epithelial Cells; Female; Gene Expression Regulation; HIV-1; Host-Pathogen Interactions; Humans; Immunity, Innate; Interleukin-8; NF-kappa B; Protein Structure, Tertiary; Protein Transport; Receptors, Immunologic; Receptors, Pattern Recognition; Sex Workers; Toll-Like Receptor 3; Transcytosis; Tumor Necrosis Factor-alpha; Virus Attachment; Virus Internalization

2012