interleukin-8 has been researched along with DNA-Virus-Infections* in 4 studies
4 other study(ies) available for interleukin-8 and DNA-Virus-Infections
Article | Year |
---|---|
Red sea bream interleukin (IL)-1β and IL-8 expression, subcellular localization, and antiviral activity against red sea bream iridovirus (RSIV).
Interleukin-1 beta (IL-1β) is transcribed by monocytes, macrophages, and dendritic cells in response to activation of toll-like receptors (TLRs) by pathogen-associated molecular patterns (PAMPs) or cytokine signalling and causes a rapid inflammatory response to infection. IL-8, also known as chemokine C-X-C motif ligand (CXCL)-8, is regulated by IL-1β and affects the chemotaxis of macrophages and neutrophils upon pathogen infection. In healthy red sea bream, rsbIL-1β is most highly distributed in the liver, and rsbIL-8 is most highly distributed in the head kidney. In response to RSIV infection, rsbIL-1β and rsbIL-8 mRNA are significantly upregulated in the kidney and spleen. This may be because the primary infection targets of RSIV are the kidney and spleen. In the gills, both genes were significantly upregulated at 7 days after RSIV infection and may be accompanied by a cytokine storm. In the liver, both genes were significantly downregulated at most observation points, which may be because the immune cells such as macrophages and dendritic cells expressing rsbIL-1β or rsbIL-8 migrated to other tissues because the degree of RSIV infection was relatively low. Using a GFP fusion protein, it was confirmed that rsbIL-1β and rsbIL-8 were localized to the cytoplasm of Pagrus major fin (PMF) cells. RsbIL-1β overexpression induced the expression of interferon gamma (IFN-γ), myxovirus-resistance protein (Mx) 1, IL-8, IL-10, TNF-α, and MyD88, while rsbIL-8 overexpression induced the expression of IFN-γ, Mx1, rsbIL-1β and TNF-α. In addition, overexpression of both genes significantly reduced the genome copies of RSIV and significantly reduced the viral titers. Therefore, rsbIL-1β and rsbIL-8 in red sea bream play an antiviral role against RSIV through their normal signalling. Topics: Animals; Antiviral Agents; DNA Virus Infections; Fish Diseases; Interferon-gamma; Interleukin-10; Interleukin-1beta; Interleukin-8; Iridoviridae; Iridovirus; Ligands; Myeloid Differentiation Factor 88; Pathogen-Associated Molecular Pattern Molecules; Perciformes; RNA, Messenger; Sea Bream; Tumor Necrosis Factor-alpha | 2022 |
Grouper interferon-induced protein 35, a CP-interacting protein, inhibits fish nodavirus replication via positively regulating host interferon and inflammatory immune response.
Interferon (IFN)-induced protein 35 (IFI35, also known as IFP35), a member of IFN induced genes (ISGs), participates in virus infection, cancer progression and the chronic inflammatory diseases. However, its roles during fish nodavirus infection still remained largely unknown. In the present study, a homolog of IFI35 from orange spotted grouper (Epinephelus coioides) (EcIFI35) was cloned and characterized. The open reading frame of EcIFI35 was composed of 1,128 bp, and encoded a 375 amino acid polypeptide, which contained two conserved N-myc-interactor (Nmi)/IFP35 domains (NIDs). Homology analysis indicated that EcIFI35 shared 95.73% and 31.96% identity with homologs of giant grouper (E. lanceolatus) and human (Homo sapiens), respectively. The transcription of EcIFI35 was significantly up-regulated in grouper spleen (GS) cells after challenged with red-spotted grouper nervous necrosis virus (RGNNV), polyinosinic:polycytidylic acid [poly(I:C)] or lipopolysaccharide (LPS). The subcellular localization analysis showed that EcIFI35 encoded a cytoplasmic protein. The ectopic expression of EcIFI35 inhibited RGNNV replication by reducing viral genes transcription and protein synthesis. Co-immunoprecipitation (Co-IP) assay demonstrated that EcIFI35 interacted with RGNNV coat protein (CP), and partly co-localized with CP. EcIFI35 overexpression promoted the expression of IFN-related molecules and pro-inflammatory factors, including IFN regulatory factor 7 (IRF7), mitochondrial antiviral signaling protein (MAVS) and myxovirus resistance gene I (MxI), nuclear factor κB (NF-κB), interleukin 6 (IL-6) and IL-8. Together, our results revealed that EcIFI35 interacted with CP and inhibited fish nodavirus replication through positively regulated host innate immune response. Topics: Amino Acid Sequence; Amino Acids; Animals; Antiviral Agents; Bass; DNA Virus Infections; Factor VII; Fish Diseases; Fish Proteins; Gene Expression Regulation; Humans; Immunity, Innate; Interferons; Interleukin-6; Interleukin-8; Lipopolysaccharides; NF-kappa B; Nodaviridae; Poly I-C; Sequence Alignment | 2022 |
Functional analysis of the Cystatin F gene response to SGIV infection in orange-spotted grouper, Epinephelus coioides.
Cystatin F (CyF), an inhibitor of cysteine protease, was widely studied in immune defense and cancer therapy. However, the function of CyF and its latent molecular mechanism during virus infection in fish remain vacant. In our research, we cloned the open reading frame (ORF) of CyF homology from orange-spotted grouper (Ec-CyF) consisting of 342 nucleotides and encoding a 114-amino acid protein. Ec-CyF included two cystatins family sequences containing one KXVXG sequence without the signal peptide, and a hairpin ring containing proline and tryptophan (PW). Tissue distribution analysis indicated that Ec-CyF was highly expressed in spleen and head kidney. Besides, further analysis showed that the expression of Ec-CyF increased during SGIV infection in grouper spleen (GS) cells. Subcellular localization assay demonstrated that Ec-CyF was mainly distributed in cytoplasm in GS cells. Overexpressed Ec-CyF demoted the mRNA level of viral genes MCP, VP19 and LITAF. Meanwhile, SGIV-induced apoptosis in fat head minnow (FHM) cells was impeded, as well as the restraint of caspase 3/7 and caspase 8. In addition, Ec-CyF overexpression up-regulated the expression of IFN related molecules including ISG15, IFN, IFP35, IRF3, IRF7, MYD88 and down-regulated proinflammatory factors such as IL-1β, IL-8 and TNF-α. At the same time, Ec-CyF-overexpressing increased the activity of IFN3 and ISRE promoter, but impeded NF-κB promoter activity by luciferase reporter gene assay. In summary, our findings suggested that Ec-CyF was involved in innate immunity response and played a key role in DNA virus infection. Topics: Amino Acid Sequence; Animals; Bass; Caspase 3; Caspase 8; DNA Virus Infections; Fish Diseases; Fish Proteins; Immunity, Innate; Interleukin-8; Myeloid Differentiation Factor 88; NF-kappa B; Nucleotides; Phylogeny; Proline; Protein Sorting Signals; RNA, Messenger; Tryptophan; Tumor Necrosis Factor-alpha | 2022 |
The CXC chemokines and CXC chemokine receptors in orange-spotted grouper (Epinephelus coioides) and their expression after Singapore grouper iridovirus infection.
Chemokines comprise a group of small molecular weight (6-14 kDa) cytokines; chemokine receptors are a superfamily of seven transmembrane domain G-coupled receptors. Both chemokines and their receptors have important roles in immune surveillance, inflammation, and development. Recently, 9 CXC chemokine ligands (CXCLs) and 8 CXC chemokine receptors (CXCRs) were identified and cloned from orange-spotted grouper (Epinephelus coioides) and annotated by phylogenetic and syntenic analyses. We detected mRNA transcripts for CXCLs and CXCRs in healthy tissues of E. coioides. Our data show that CXCL genes are highly expressed in the spleen, kidney and liver and that CXCR genes are ubiquitously expressed, rather than being expressed only in immune organs. Analysis of gene expression after Singapore grouper iridovirus infection indicated that CXCL and CXCR genes are regulated in a gene-specific manner. CXCL8 and CXCL12a were significantly upregulated in the spleen, kidney and liver of resistant fish, indicating potential roles in immunity against the pathogen. Additionally, CXCR4a was upregulated in all three organs in resistant fish, suggesting that CXCL8 or CXCL12a may participate in the immune response via interaction with CXCR4a. In addition, the new orange-spotted grouper receptor CXCR1b was found to be upregulated in the spleen and kidney of resistant fish, indicating that this receptor plays an important role in immune responses to viral infection. These results are valuable for comparative immunological studies and provide insight into the roles of these genes in viral infection. Topics: Animals; Chemokine CXCL12; Cloning, Molecular; DNA Virus Infections; Fish Diseases; Fish Proteins; Gene Expression Regulation; Immunity, Innate; Interleukin-8; Iridovirus; Perciformes; Phylogeny; Receptors, CXCR4; Receptors, Interleukin-8A; Transcriptome | 2019 |