interleukin-8 has been researched along with Classical-Swine-Fever* in 3 studies
3 other study(ies) available for interleukin-8 and Classical-Swine-Fever
Article | Year |
---|---|
Classical swine fever virus NS4B protein interacts with MAVS and inhibits IL-8 expression in PAMs.
Classical swine fever virus (CSFV) infection causes a severe disease of pigs, resulting in significant economic losses. The CSFV NS4B protein is crucial for viral replication and pathogenicity. Interleukin 8 (IL-8), a main chemokine, is induced by multiple cell types and plays an essential role in host defense mechanisms against numerous viruses. It has been reported that NS4A of CSFV is involved in the induction of IL-8 expression in swine umbilical vein endothelial cells. However, the effect of CSFV NS4B on IL-8 expression is unknown. In this study, we showed that CSFV NS4B inhibited IL-8 expression in porcine alveolar macrophages (PAMs), and NS4B inhibited mitochondrial antiviral signaling protein (MAVS)-induced IL-8 expression. Moreover, CSFV NS4B interacted with MAVS. However, NS4B did not alter MAVS expression. Subsequently, we demonstrated that IRF3 knockdown or NF-κB inhibition reduced MAVS-induced IL-8 expression. Furthermore, the IRF3 and NF-κB pathways were activated by MAVS expression. However, CSFV NS4B inhibited MAVS-mediated NF-κB activation and IRF3 expression. Finally, CSFV NS4B inhibited IRF3 expression. Our findings reveal that CSFV NS4B interacts with MAVS and inhibits IL-8 expression by blocking the activation of IRF3 and NF-κB. Taken together, this study provides insights into the mechanism of NS4B-inhibited IL-8 expression. Topics: Animals; Classical Swine Fever; Classical Swine Fever Virus; Endothelial Cells; Host-Pathogen Interactions; Interleukin-8; Macrophages, Alveolar; NF-kappa B; Swine; Virus Replication | 2022 |
Classical swine fever virus infection modulates serum levels of INF-α, IL-8 and TNF-α in 6-month-old pigs.
Several studies have highlighted the important role of cytokines in disease development of classical swine fever virus (CSFV) infection. In the present study, we examined the kinetics of 7 porcine cytokines in serum from pigs infected with 3 different CSFV strains. Based on the clinical picture in 6-month-old Danish pigs, the strains used for inoculation were classified as being of low (Bergen), low to moderate (Eystrup) and moderate to high (Lithuania) virulence. The cytokines interferon-alpha (INF-α), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) showed increased levels after CSFV infection with more or less comparable course in the 3 groups. However, the cytokine level peaked with a 2-3 days delay in pigs infected with the low virulent strain compared to those infected with a moderately or highly virulent strain. These findings may indicate that INF-α, IL-8 and TNF-α are involved in the immune response during CSFV infection with strains of different virulence. Topics: Animals; Classical Swine Fever; Classical Swine Fever Virus; Interferon-alpha; Interleukin-8; Swine; Tumor Necrosis Factor-alpha; Virulence | 2013 |
Classical swine fever virus NS2 protein promotes interleukin-8 expression and inhibits MG132-induced apoptosis.
Classical swine fever (CSF) caused by virulent strains of classical swine fever virus (CSFV) is a hemorrhagic disease of pigs and is characterized by disseminated intravascular coagulation, thrombocytopenia, and immunosuppression. Until now, the role of the NS2 protein produced by CSFV in the pathogenesis of CSF is not well understood. In this report, we investigated the function of CSFV NS2 by examining its effects on the pro-inflammatory CXC chemokine, interleukin-8 (IL-8) expression, and cell survival. Stable swine umbilical vein endothelial cell line (SUVEC) expressing CSFV NS2 were established and showed that CSFV NS2 expressing SUVEC cells express approximately 16-fold higher levels of IL-8 as compared to control vector GFP-expressing cells, GFP-E2 expressing cells, and untransfected cells. Further studies showed that CSFV NS2 induced endoplasmic reticulum stress and activated the nuclear transcription factor kappa B (NF-κB), which is responsible for the up-regulation of IL-8 and the anti-apoptotic protein, Bcl-2, expression. In addition, the GFPNS2-expressing SUVEC cells were resistant to MG132-induced apoptosis. This study suggested that CSFV NS2 plays an important role in the inflammatory response and in persistent CSFV infection. These findings provide novel information on the function of the poorly characterized CSFV NS2. Topics: Animals; Apoptosis; Cell Line; Classical Swine Fever; Classical Swine Fever Virus; Down-Regulation; Interleukin-8; Leupeptins; Swine; Up-Regulation; Viral Nonstructural Proteins | 2011 |