interleukin-8 and Cell-Transformation--Neoplastic

interleukin-8 has been researched along with Cell-Transformation--Neoplastic* in 51 studies

Reviews

3 review(s) available for interleukin-8 and Cell-Transformation--Neoplastic

ArticleYear
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised.

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus

2016
Helicobacter pylori and interleukin-8 in gastric cancer.
    World journal of gastroenterology, 2013, Dec-07, Volume: 19, Issue:45

    Helicobacter pylori (H. pylori) is a major etiological factor in the development of gastric cancer. Large-scale epidemiological studies have confirmed the strong association between H. pylori infection and both cancer development and progression. Interleukin-8 (IL-8) is overexpressed in gastric mucosa exposed to H. pylori. The expression of IL-8 directly correlates with a poor prognosis in gastric cancer. IL-8 is multifunctional. In addition to its potent chemotactic activity, it can induce proliferation and migration of cancer cells. In this review, we focus on recent insights into the mechanisms of IL-8 signaling associated with gastric cancer. The relationship between IL-8 and H. pylori is discussed. We also summarize the current therapeutics against IL-8 in gastric cancer.

    Topics: Animals; Antineoplastic Agents; Cell Transformation, Neoplastic; Drug Design; Gastric Mucosa; Helicobacter Infections; Helicobacter pylori; Humans; Interleukin-8; Molecular Targeted Therapy; Prognosis; Receptors, Interleukin-8; Risk Factors; Signal Transduction; Stomach Neoplasms

2013
The relationship of endometriosis and ovarian malignancy: a review.
    Fertility and sterility, 2008, Volume: 90, Issue:5

    To review the malignant potential of endometriosis based on epidemiologic, histopathologic, and molecular data.. Literature review.. The pathogenesis of endometriosis remains unclear. The histopathologic development of endometriosis has undergone long-term investigation. Studies have confirmed histologic transition from benign endometriosis to ovarian malignancy, including malignant transformation of extraovarian endometriosis. The prevalence of endometriosis in patients with epithelial ovarian cancer, especially in endometrioid and clear cell types, has been confirmed to be higher than in the general population. Ovarian cancers and adjacent endometriotic lesions have shown common genetic alterations, such as PTEN, p53, and bcl gene mutations, suggesting a possible malignant genetic transition spectrum. Furthermore, endometriosis has been associated with a chronic inflammatory state leading to cytokine release. These cytokines act in a complex system in which they induce or repress their own synthesis and can cause unregulated mitotic division, growth and differentiation, and migration or apoptosis similar to malignant mechanisms.. The malignant potential of endometriosis holds serious implications for management, such as the need for earlier and more meticulous surgical intervention for complete disease treatment.

    Topics: Cell Transformation, Neoplastic; Endometriosis; Female; Gene Expression Regulation, Neoplastic; Genomic Instability; Humans; Incidence; Intercellular Signaling Peptides and Proteins; Interleukin-1; Interleukin-8; Mutation; Ovarian Neoplasms; Prevalence; Transforming Growth Factor beta; Treatment Outcome; Tumor Necrosis Factor-alpha

2008

Trials

1 trial(s) available for interleukin-8 and Cell-Transformation--Neoplastic

ArticleYear
    The Egyptian journal of chest diseases and tuberculosis, 2016, Volume: 65, Issue:1

    Middle East Respiratory Syndrome (MERS) is a novel respiratory illness firstly reported in Saudi Arabia in 2012. It is caused by a new corona virus, called MERS corona virus (MERS-CoV). Most people who have MERS-CoV infection developed severe acute respiratory illness.. This work is done to determine the clinical characteristics and the outcome of intensive care unit (ICU) admitted patients with confirmed MERS-CoV infection.. This study included 32 laboratory confirmed MERS corona virus infected patients who were admitted into ICU. It included 20 (62.50%) males and 12 (37.50%) females. The mean age was 43.99 ± 13.03 years. Diagnosis was done by real-time reverse transcription polymerase chain reaction (rRT-PCR) test for corona virus on throat swab, sputum, tracheal aspirate, or bronchoalveolar lavage specimens. Clinical characteristics, co-morbidities and outcome were reported for all subjects.. Most MERS corona patients present with fever, cough, dyspnea, sore throat, runny nose and sputum. The presence of abdominal symptoms may indicate bad prognosis. Prolonged duration of symptoms before patients' hospitalization, prolonged duration of mechanical ventilation and hospital stay, bilateral radiological pulmonary infiltrates, and hypoxemic respiratory failure were found to be strong predictors of mortality in such patients. Also, old age, current smoking, smoking severity, presence of associated co-morbidities like obesity, diabetes mellitus, chronic heart diseases, COPD, malignancy, renal failure, renal transplantation and liver cirrhosis are associated with a poor outcome of ICU admitted MERS corona virus infected patients.. Plasma HO-1, ferritin, p21, and NQO1 were all elevated at baseline in CKD participants. Plasma HO-1 and urine NQO1 levels each inversely correlated with eGFR (. SnPP can be safely administered and, after its injection, the resulting changes in plasma HO-1, NQO1, ferritin, and p21 concentrations can provide information as to antioxidant gene responsiveness/reserves in subjects with and without kidney disease.. A Study with RBT-1, in Healthy Volunteers and Subjects with Stage 3-4 Chronic Kidney Disease, NCT0363002 and NCT03893799.. HFNC did not significantly modify work of breathing in healthy subjects. However, a significant reduction in the minute volume was achieved, capillary [Formula: see text] remaining constant, which suggests a reduction in dead-space ventilation with flows > 20 L/min. (ClinicalTrials.gov registration NCT02495675).. 3 组患者手术时间、术中显性失血量及术后 1 周血红蛋白下降量比较差异均无统计学意义(. 对于肥胖和超重的膝关节单间室骨关节炎患者,采用 UKA 术后可获满意短中期疗效,远期疗效尚需进一步随访观察。.. Decreased muscle strength was identified at both time points in patients with hEDS/HSD. The evolution of most muscle strength parameters over time did not significantly differ between groups. Future studies should focus on the effectiveness of different types of muscle training strategies in hEDS/HSD patients.. These findings support previous adverse findings of e-cigarette exposure on neurodevelopment in a mouse model and provide substantial evidence of persistent adverse behavioral and neuroimmunological consequences to adult offspring following maternal e-cigarette exposure during pregnancy. https://doi.org/10.1289/EHP6067.. This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies.. NCT04138212, date of registration: October 24, 2019.. Results of current investigation indicated that milk type and post fermentation cooling patterns had a pronounced effect on antioxidant characteristics, fatty acid profile, lipid oxidation and textural characteristics of yoghurt. Buffalo milk based yoghurt had more fat, protein, higher antioxidant capacity and vitamin content. Antioxidant and sensory characteristics of T. If milk is exposed to excessive amounts of light, Vitamins B. The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and Slc30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only Slc30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes.. Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised.

    Topics: A549 Cells; Acetylmuramyl-Alanyl-Isoglutamine; Acinetobacter baumannii; Acute Lung Injury; Adaptor Proteins, Signal Transducing; Adenine; Adenocarcinoma; Adipogenesis; Administration, Cutaneous; Administration, Ophthalmic; Adolescent; Adsorption; Adult; Aeromonas hydrophila; Aerosols; Aged; Aged, 80 and over; Aging; Agriculture; Air Pollutants; Air Pollution; Airway Remodeling; Alanine Transaminase; Albuminuria; Aldehyde Dehydrogenase 1 Family; Algorithms; AlkB Homolog 2, Alpha-Ketoglutarate-Dependent Dioxygenase; Alzheimer Disease; Amino Acid Sequence; Ammonia; Ammonium Compounds; Anaerobiosis; Anesthetics, Dissociative; Anesthetics, Inhalation; Animals; Anti-Bacterial Agents; Anti-HIV Agents; Anti-Infective Agents; Anti-Inflammatory Agents; Antibiotics, Antineoplastic; Antibodies, Antineutrophil Cytoplasmic; Antibodies, Monoclonal, Humanized; Antifungal Agents; Antigens, Bacterial; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Antimetabolites, Antineoplastic; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antitubercular Agents; Antiviral Agents; Apolipoproteins E; Apoptosis; Arabidopsis; Arabidopsis Proteins; Arsenic; Arthritis, Rheumatoid; Asthma; Atherosclerosis; ATP-Dependent Proteases; Attitude of Health Personnel; Australia; Austria; Autophagy; Axitinib; Bacteria; Bacterial Outer Membrane Proteins; Bacterial Proteins; Bacterial Toxins; Bacterial Typing Techniques; Bariatric Surgery; Base Composition; Bayes Theorem; Benzoxazoles; Benzylamines; beta Catenin; Betacoronavirus; Betula; Binding Sites; Biological Availability; Biological Oxygen Demand Analysis; Biomarkers; Biomarkers, Tumor; Biopsy; Bioreactors; Biosensing Techniques; Birth Weight; Blindness; Blood Chemical Analysis; Blood Gas Analysis; Blood Glucose; Blood Pressure; Blood Pressure Monitoring, Ambulatory; Blood-Brain Barrier; Blotting, Western; Body Mass Index; Body Weight; Bone and Bones; Bone Density; Bone Resorption; Borates; Brain; Brain Infarction; Brain Injuries, Traumatic; Brain Neoplasms; Breakfast; Breast Milk Expression; Breast Neoplasms; Bronchi; Bronchoalveolar Lavage Fluid; Buffaloes; Cadherins; Calcification, Physiologic; Calcium Compounds; Calcium, Dietary; Cannula; Caprolactam; Carbon; Carbon Dioxide; Carboplatin; Carcinogenesis; Carcinoma, Ductal; Carcinoma, Ehrlich Tumor; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Pancreatic Ductal; Carcinoma, Renal Cell; Cardiovascular Diseases; Carps; Carrageenan; Case-Control Studies; Catalysis; Catalytic Domain; Cattle; CD8-Positive T-Lymphocytes; Cell Adhesion; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Line; Cell Line, Tumor; Cell Movement; Cell Nucleus; Cell Phone Use; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cell Transformation, Viral; Cells, Cultured; Cellulose; Chemical Phenomena; Chemoradiotherapy; Child; Child Development; Child, Preschool; China; Chitosan; Chlorocebus aethiops; Cholecalciferol; Chromatography, Liquid; Circadian Clocks; Circadian Rhythm; Circular Dichroism; Cisplatin; Citric Acid; Clinical Competence; Clinical Laboratory Techniques; Clinical Trials, Phase I as Topic; Clinical Trials, Phase II as Topic; Clostridioides difficile; Clostridium Infections; Coculture Techniques; Cohort Studies; Cold Temperature; Colitis; Collagen Type I; Collagen Type I, alpha 1 Chain; Collagen Type XI; Color; Connective Tissue Diseases; Copper; Coronary Angiography; Coronavirus 3C Proteases; Coronavirus Infections; Cost of Illness; Counselors; COVID-19; COVID-19 Testing; Creatine Kinase; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Cryoelectron Microscopy; Cryosurgery; Crystallography, X-Ray; Cues; Cultural Competency; Cultural Diversity; Curriculum; Cyclic AMP Response Element-Binding Protein; Cyclin-Dependent Kinase Inhibitor p21; Cycloparaffins; Cysteine Endopeptidases; Cytokines; Cytoplasm; Cytoprotection; Databases, Factual; Denitrification; Deoxycytidine; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diagnosis, Differential; Diatoms; Diet; Diet, High-Fat; Dietary Exposure; Diffusion Magnetic Resonance Imaging; Diketopiperazines; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Disease Progression; Disease-Free Survival; DNA; DNA Damage; DNA Glycosylases; DNA Repair; DNA-Binding Proteins; DNA, Bacterial; DNA, Viral; Docetaxel; Dose Fractionation, Radiation; Dose-Response Relationship, Drug; Down-Regulation; Doxorubicin; Drosophila; Drosophila melanogaster; Drug Carriers; Drug Delivery Systems; Drug Liberation; Drug Repositioning; Drug Resistance, Bacterial; Drug Resistance, Multiple, Bacterial; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Drug Synergism; Drug Therapy, Combination; Edema; Edible Grain; Education, Graduate; Education, Medical, Graduate; Education, Pharmacy; Ehlers-Danlos Syndrome; Electron Transport Complex III; Electron Transport Complex IV; Electronic Nicotine Delivery Systems; Emergency Service, Hospital; Empathy; Emulsions; Endothelial Cells; Endurance Training; Energy Intake; Enterovirus A, Human; Environment; Environmental Monitoring; Enzyme Assays; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Epoxide Hydrolases; Epoxy Compounds; Erythrocyte Count; Erythrocytes; Escherichia coli; Escherichia coli Infections; Escherichia coli Proteins; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Esophagectomy; Estrogens; Etanercept; Ethiopia; Ethnicity; Ethylenes; Exanthema; Exercise; Exercise Test; Exercise Tolerance; Extracellular Matrix; Extracorporeal Membrane Oxygenation; Eye Infections, Fungal; False Negative Reactions; Fatty Acids; Fecal Microbiota Transplantation; Feces; Female; Femur Neck; Fermentation; Ferritins; Fetal Development; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Fibroblasts; Fibroins; Fish Proteins; Flavanones; Flavonoids; Focus Groups; Follow-Up Studies; Food Handling; Food Supply; Food, Formulated; Forced Expiratory Volume; Forests; Fractures, Bone; Fruit and Vegetable Juices; Fusobacteria; G1 Phase Cell Cycle Checkpoints; G2 Phase Cell Cycle Checkpoints; Gamma Rays; Gastrectomy; Gastrointestinal Microbiome; Gastrointestinal Stromal Tumors; Gefitinib; Gels; Gemcitabine; Gene Amplification; Gene Expression; Gene Expression Regulation; Gene Expression Regulation, Bacterial; Gene Expression Regulation, Neoplastic; Gene Expression Regulation, Plant; Gene Knockdown Techniques; Gene-Environment Interaction; Genotype; Germany; Glioma; Glomerular Filtration Rate; Glucagon; Glucocorticoids; Glycemic Control; Glycerol; Glycogen Synthase Kinase 3 beta; Glycolipids; Glycolysis; Goblet Cells; Gram-Negative Bacterial Infections; Granulocyte Colony-Stimulating Factor; Graphite; Greenhouse Effect; Guanidines; Haemophilus influenzae; HCT116 Cells; Health Knowledge, Attitudes, Practice; Health Personnel; Health Services Accessibility; Health Services Needs and Demand; Health Status Disparities; Healthy Volunteers; Heart Failure; Heart Rate; Heart Transplantation; Heart-Assist Devices; HEK293 Cells; Heme; Heme Oxygenase-1; Hemolysis; Hemorrhage; Hepatitis B; Hepatitis B e Antigens; Hepatitis B Surface Antigens; Hepatitis B virus; Hepatitis B, Chronic; Hepatocytes; Hexoses; High-Throughput Nucleotide Sequencing; Hippo Signaling Pathway; Histamine; Histamine Agonists; Histidine; Histone Deacetylase 2; HIV Infections; HIV Reverse Transcriptase; HIV-1; Homebound Persons; Homeodomain Proteins; Homosexuality, Male; Hospice and Palliative Care Nursing; HSP70 Heat-Shock Proteins; Humans; Hyaluronan Receptors; Hydrogen; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrolysis; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypoglycemia; Hypoglycemic Agents; Hypoxia; Idiopathic Interstitial Pneumonias; Imaging, Three-Dimensional; Imatinib Mesylate; Immunotherapy; Implementation Science; Incidence; INDEL Mutation; Induced Pluripotent Stem Cells; Industrial Waste; Infant; Infant, Newborn; Inflammation; Inflammation Mediators; Infliximab; Infusions, Intravenous; Inhibitory Concentration 50; Injections; Insecticides; Insulin-Like Growth Factor Binding Protein 5; Insulin-Secreting Cells; Interleukin-1; Interleukin-17; Interleukin-8; Internship and Residency; Intestines; Intracellular Signaling Peptides and Proteins; Ion Transport; Iridaceae; Iridoid Glucosides; Islets of Langerhans Transplantation; Isodon; Isoflurane; Isotopes; Italy; Joint Instability; Ketamine; Kidney; Kidney Failure, Chronic; Kidney Function Tests; Kidney Neoplasms; Kinetics; Klebsiella pneumoniae; Knee Joint; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Lactate Dehydrogenase 5; Laparoscopy; Laser Therapy; Lasers, Semiconductor; Lasers, Solid-State; Laurates; Lead; Leukocyte L1 Antigen Complex; Leukocytes, Mononuclear; Light; Lipid Peroxidation; Lipopolysaccharides; Liposomes; Liver; Liver Cirrhosis; Liver Neoplasms; Liver Transplantation; Locomotion; Longitudinal Studies; Lopinavir; Lower Urinary Tract Symptoms; Lubricants; Lung; Lung Diseases, Interstitial; Lung Neoplasms; Lymphocyte Activation; Lymphocytes, Tumor-Infiltrating; Lymphoma, Mantle-Cell; Lysosomes; Macrophages; Male; Manganese Compounds; MAP Kinase Kinase 4; Mass Screening; Maternal Health; Medicine, Chinese Traditional; Melanoma, Experimental; Memantine; Membrane Glycoproteins; Membrane Proteins; Mesenchymal Stem Cell Transplantation; Metal Nanoparticles; Metalloendopeptidases; Metalloporphyrins; Methadone; Methane; Methicillin-Resistant Staphylococcus aureus; Mexico; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Mice, Nude; Mice, SCID; Mice, Transgenic; Microarray Analysis; Microbial Sensitivity Tests; Microbiota; Micronutrients; MicroRNAs; Microscopy, Confocal; Microsomes, Liver; Middle Aged; Milk; Milk, Human; Minority Groups; Mitochondria; Mitochondrial Membranes; Mitochondrial Proteins; Models, Animal; Models, Molecular; Molecular Conformation; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Epidemiology; Molecular Structure; Molecular Weight; Multilocus Sequence Typing; Multimodal Imaging; Muscle Strength; Muscle, Skeletal; Muscular Diseases; Mutation; Mycobacterium tuberculosis; Myocardial Stunning; Myristates; NAD(P)H Dehydrogenase (Quinone); Nanocomposites; Nanogels; Nanoparticles; Nanotechnology; Naphthalenes; Nasal Cavity; National Health Programs; Necrosis; Needs Assessment; Neoadjuvant Therapy; Neonicotinoids; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasm Proteins; Neoplasm Recurrence, Local; Neoplasm Staging; Neoplasm Transplantation; Neoplasms; Neoplastic Stem Cells; Netherlands; Neuroblastoma; Neuroprotective Agents; Neutrophils; NF-kappa B; NFATC Transcription Factors; Nicotiana; Nicotine; Nitrates; Nitrification; Nitrites; Nitro Compounds; Nitrogen; Nitrogen Dioxide; North Carolina; Nuclear Magnetic Resonance, Biomolecular; Nuclear Proteins; Nucleic Acid Hybridization; Nucleosomes; Nutrients; Obesity; Obesity, Morbid; Oceans and Seas; Oncogene Protein v-akt; Oncogenes; Oocytes; Open Reading Frames; Osteoclasts; Osteogenesis; Osteoporosis; Osteoporosis, Postmenopausal; Outpatients; Ovarian Neoplasms; Ovariectomy; Overweight; Oxazines; Oxidants; Oxidation-Reduction; Oxidative Stress; Oxides; Oxidoreductases; Oxygen; Oxygen Inhalation Therapy; Oxygenators, Membrane; Ozone; Paclitaxel; Paenibacillus; Pain Measurement; Palliative Care; Pancreatic Neoplasms; Pandemics; Parasympathetic Nervous System; Particulate Matter; Pasteurization; Patient Preference; Patient Satisfaction; Pediatric Obesity; Permeability; Peroxiredoxins; Peroxynitrous Acid; Pharmaceutical Services; Pharmacists; Pharmacy; Phaseolus; Phenotype; Phoeniceae; Phosphates; Phosphatidylinositol 3-Kinases; Phospholipid Transfer Proteins; Phospholipids; Phosphorus; Phosphorylation; Photoperiod; Photosynthesis; Phylogeny; Physical Endurance; Physicians; Pilot Projects; Piperidines; Pituitary Adenylate Cyclase-Activating Polypeptide; Plant Extracts; Plant Leaves; Plant Proteins; Plant Roots; Plaque, Atherosclerotic; Pneumonia; Pneumonia, Viral; Point-of-Care Testing; Polyethylene Glycols; Polymers; Polysorbates; Pore Forming Cytotoxic Proteins; Positron Emission Tomography Computed Tomography; Positron-Emission Tomography; Postprandial Period; Poverty; Pre-Exposure Prophylaxis; Prediabetic State; Predictive Value of Tests; Pregnancy; Pregnancy Trimester, First; Pregnancy, High-Risk; Prenatal Exposure Delayed Effects; Pressure; Prevalence; Primary Graft Dysfunction; Primary Health Care; Professional Role; Professionalism; Prognosis; Progression-Free Survival; Prolactin; Promoter Regions, Genetic; Proof of Concept Study; Proportional Hazards Models; Propylene Glycol; Prospective Studies; Prostate; Protein Binding; Protein Biosynthesis; Protein Isoforms; Protein Kinase Inhibitors; Protein Phosphatase 2; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Protein Structure, Tertiary; Protein Transport; Proteoglycans; Proteome; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-myc; Proto-Oncogene Proteins c-ret; Proto-Oncogene Proteins p21(ras); Proton Pumps; Protons; Protoporphyrins; Pseudomonas aeruginosa; Pseudomonas fluorescens; Pulmonary Artery; Pulmonary Disease, Chronic Obstructive; Pulmonary Gas Exchange; Pulmonary Veins; Pyrazoles; Pyridines; Pyrimidines; Qualitative Research; Quinoxalines; Rabbits; Random Allocation; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Histamine H3; Receptors, Immunologic; Receptors, Transferrin; Recombinant Proteins; Recurrence; Reference Values; Referral and Consultation; Regional Blood Flow; Registries; Regulon; Renal Insufficiency, Chronic; Reperfusion Injury; Repressor Proteins; Reproducibility of Results; Republic of Korea; Research Design; Resistance Training; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Resuscitation; Retinal Dehydrogenase; Retreatment; Retrospective Studies; Reverse Transcriptase Inhibitors; Rhinitis, Allergic; Ribosomal Proteins; Ribosomes; Risk Assessment; Risk Factors; Ritonavir; Rivers; RNA Interference; RNA-Seq; RNA, Messenger; RNA, Ribosomal, 16S; RNA, Small Interfering; Rosuvastatin Calcium; Rural Population; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salivary Ducts; Salivary Gland Neoplasms; San Francisco; SARS-CoV-2; Satiation; Satiety Response; Schools; Schools, Pharmacy; Seasons; Seawater; Selection, Genetic; Sequence Analysis, DNA; Serine-Threonine Kinase 3; Sewage; Sheep; Sheep, Domestic; Shock, Hemorrhagic; Signal Transduction; Silver; Silymarin; Single Photon Emission Computed Tomography Computed Tomography; Sirolimus; Sirtuin 1; Skin; Skin Neoplasms; Skin Physiological Phenomena; Sleep Initiation and Maintenance Disorders; Social Class; Social Participation; Social Support; Soil; Soil Microbiology; Solutions; Somatomedins; Soot; Specimen Handling; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Spinal Fractures; Spirometry; Staphylococcus aureus; STAT1 Transcription Factor; STAT3 Transcription Factor; Streptomyces coelicolor; Stress, Psychological; Stroke; Stroke Volume; Structure-Activity Relationship; Students, Medical; Students, Pharmacy; Substance Abuse Treatment Centers; Sulfur Dioxide; Surface Properties; Surface-Active Agents; Surveys and Questionnaires; Survival Analysis; Survival Rate; Survivin; Sweden; Swine; Swine, Miniature; Sympathetic Nervous System; T-Lymphocytes, Regulatory; Talaromyces; Tandem Mass Spectrometry; tau Proteins; Telemedicine; Telomerase; Telomere; Telomere Homeostasis; Temperature; Terminally Ill; Th1 Cells; Thiamethoxam; Thiazoles; Thiophenes; Thioredoxin Reductase 1; Thrombosis; Thulium; Thyroid Cancer, Papillary; Thyroid Carcinoma, Anaplastic; Thyroid Neoplasms; Time Factors; Titanium; Tomography, Emission-Computed, Single-Photon; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Transcription Factor AP-1; Transcription Factors; Transcription, Genetic; Transcriptional Activation; Transcriptome; Transforming Growth Factor beta1; Transistors, Electronic; Translational Research, Biomedical; Transplantation Tolerance; Transplantation, Homologous; Transportation; Treatment Outcome; Tretinoin; Tuberculosis, Multidrug-Resistant; Tuberculosis, Pulmonary; Tubulin Modulators; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Twins; Ultrasonic Therapy; Ultrasonography; Ultraviolet Rays; United States; Up-Regulation; Uranium; Urethra; Urinary Bladder; Urodynamics; Uromodulin; Uveitis; Vasoconstrictor Agents; Ventricular Function, Left; Vero Cells; Vesicular Transport Proteins; Viral Nonstructural Proteins; Visual Acuity; Vital Capacity; Vitamin D; Vitamin D Deficiency; Vitamin K 2; Vitamins; Volatilization; Voriconazole; Waiting Lists; Waste Disposal, Fluid; Wastewater; Water Pollutants, Chemical; Whole Genome Sequencing; Wine; Wnt Signaling Pathway; Wound Healing; Wounds and Injuries; WW Domains; X-linked Nuclear Protein; X-Ray Diffraction; Xanthines; Xenograft Model Antitumor Assays; YAP-Signaling Proteins; Yogurt; Young Adult; Zebrafish; Zebrafish Proteins; Ziziphus

2016

Other Studies

48 other study(ies) available for interleukin-8 and Cell-Transformation--Neoplastic

ArticleYear
Nonalcoholic steatohepatitis-associated hepatocarcinogenesis in mice fed a modified choline-deficient, methionine-lowered, L-amino acid-defined diet and the role of signal changes.
    PloS one, 2023, Volume: 18, Issue:8

    Nonalcoholic steatohepatitis (NASH) can progress to cirrhosis and even hepatocellular carcinoma (HCC). The incidence of NASH-associated HCC is increasing, posing a serious public health threat. Unfortunately, the underlying pathological mechanisms, including the possible differences between neoplastic and non-neoplastic lesions, remain largely unknown. Previously, we reported a dietary mouse NASH model with a choline-deficient, methionine-lowered, L-amino-acid-defined, high-fat diet containing shortening without trans fatty acids (CDAA-HF-T[-]), which rapidly induces fibrosis and proliferative lesions in the liver. This study aimed to develop a mouse CDAA-HF-T(-) model capable of assessing NASH-associated hepatocarcinogenesis and identifying key signaling factors involved in its underlying mechanisms. Multiple large masses, histopathologically hepatocellular adenomas and carcinomas, and hemangiosarcomas were detected in the liver samples of mice fed CDAA-HF-T(-) for 52 or 63 weeks, along with highly advanced fibrosis and numerous foamy, phagocytic macrophages in the adjacent nontumoral area. Multiple metastatic nodules were found in the lungs of one of the animals, and lymphoid clusters were found in all CDAA-HF-T(-) group mice. In the Ingenuity Pathways Analysis of RNA expression data, the CDAA-HF-T(-) feeding revealed common signal changes in nontumoral and tumoral liver tissues, including increased IL-8 and RhoGTPases signaling and decreased lipid metabolism. Meanwhile, macrophage inflammatory protein 2 (MIP-2) expression levels were upregulated in nontumoral liver tissue from the end of Week 13 of CDAA-HF-T(-) feeding to the end of Week 63. On the other hand, MIP-2 was expressed on macrophages in non-tumor areas and hepatocytes in tumor areas. Therefore, the CDAA-HF-T(-) mouse model is useful for assessing NASH and NASH-associated hepatocarcinogenesis, and IL-8 signaling plays important roles in NASH-associated carcinogenesis and cirrhosis, but it may also play different roles in nontumoral liver tissue and tumorigenesis.

    Topics: Amino Acids; Animals; Carcinoma, Hepatocellular; Cell Transformation, Neoplastic; Choline; Choline Deficiency; Diet, High-Fat; Disease Models, Animal; Fibrosis; Interleukin-8; Liver; Liver Cirrhosis; Liver Neoplasms; Methionine; Mice; Mice, Inbred C57BL; Non-alcoholic Fatty Liver Disease

2023
AI-assisted discovery of an ethnicity-influenced driver of cell transformation in esophageal and gastroesophageal junction adenocarcinomas.
    JCI insight, 2022, 09-22, Volume: 7, Issue:18

    Although Barrett's metaplasia of the esophagus (BE) is the only known precursor lesion to esophageal adenocarcinomas (EACs), drivers of cellular transformation in BE remain incompletely understood. We use an artificial intelligence-guided network approach to study EAC initiation and progression. Key predictions are subsequently validated in a human organoid model, in patient-derived biopsy specimens of BE, a case-control study of genomics of BE progression, and in a cross-sectional study of 113 patients with BE and EACs. Our model classified healthy esophagus from BE and BE from EACs in several publicly available gene expression data sets (n = 932 samples). The model confirmed that all EACs must originate from BE and pinpointed a CXCL8/IL8↔neutrophil immune microenvironment as a driver of cellular transformation in EACs and gastroesophageal junction adenocarcinomas. This driver is prominent in White individuals but is notably absent in African Americans (AAs). Network-derived gene signatures, independent signatures of neutrophil processes, CXCL8/IL8 expression, and an absolute neutrophil count (ANC) are associated with risk of progression. SNPs associated with changes in ANC by ethnicity (e.g., benign ethnic neutropenia [BEN]) modify that risk. Findings define a racially influenced immunological basis for cell transformation and suggest that BEN in AAs may be a deterrent to BE→EAC progression.

    Topics: Adenocarcinoma; Artificial Intelligence; Barrett Esophagus; Case-Control Studies; Cell Transformation, Neoplastic; Cross-Sectional Studies; Esophageal Neoplasms; Esophagogastric Junction; Ethnicity; Humans; Interleukin-8; Tumor Microenvironment

2022
Augmented CPT1A Expression Is Associated with Proliferation and Colony Formation during Barrett's Tumorigenesis.
    International journal of molecular sciences, 2022, Oct-04, Volume: 23, Issue:19

    Obesity is a known risk factor for the development of gastroesophageal reflux disease (GERD), Barrett's Esophagus (BE) and the progression to esophageal adenocarcinoma. The mechanisms by which obesity contributes to GERD, BE and its progression are currently not well understood. Recently, changes in lipid metabolism especially in the context of a high fat diet have been linked to GERD and BE leading us to explore whether fatty acid oxidation plays a role in the disease progression from GERD to esophageal adenocarcinoma. To that end, we analyzed the expression of the rate-limiting enzyme, carnitine palmytoyltransferase 1A (CPT1A), in human tissues and cell lines representing different stages in the sequence from normal squamous esophagus to cancer. We determined uptake of palmitic acid, the most abundant fatty acid in human serum, with fluorescent dye-labeled lipids as well as functional consequences of stimulation with palmitic acid relevant to Barrett's tumorigenesis, e.g., proliferation, characteristics of stemness and IL8 mediated inflammatory signaling. We further employed different mouse models including a genetic model of Barrett's esophagus based on IL1β overexpression in the presence and absence of a high fat diet and deoxycholic acid to physiologically mimic gastrointestinal reflux in the mice. Together, our data demonstrate that CPT1A is upregulated in Barrett's tumorigenesis and that experimental palmitic acid is delivered to mitochondria and associated with increased cell proliferation and stem cell marker expression.

    Topics: Adenocarcinoma; Animals; Barrett Esophagus; Carcinogenesis; Carnitine; Carnitine O-Palmitoyltransferase; Cell Proliferation; Cell Transformation, Neoplastic; Deoxycholic Acid; Esophageal Neoplasms; Fluorescent Dyes; Gastroesophageal Reflux; Humans; Interleukin-8; Mice; Obesity; Palmitic Acid

2022
Stabilization of C/EBPβ through direct interaction with STAT3 in H-Ras transformed human mammary epithelial cells.
    Biochemical and biophysical research communications, 2021, 03-26, Volume: 546

    Signal transducer and activator of transcription 3 (STAT3) plays important roles in cancer-associated inflammation by controlling expression of proinflammatory cytokines and chemokines. Recent studies suggest that C/EBPβ (CCAAT-enhancer binding protein beta) and STAT3 synergistically stimulate cancer cell proliferation and epithelial-mesenchymal transition. C/EBPβ is a leucine-zipper transcription factor that regulates expression of a variety of inflammatory cytokines or chemokines, such as IL-8, G-CSF (granulocyte colony stimulating factor), and GM-CSF (granulocyte macrophage colony stimulating factor) which induce neutrophil infiltration and differentiation. However, molecular mechanisms by which STAT3 and C/EBPβ cooperatively interact had not been fully elucidated. In this study, we found that the level of C/EBPβ protein, but not that of its mRNA transcript, was decreased in the absence of STAT3 in H-Ras transformed human mammary epithelial (H-Ras MCF10A) cells. In addition, silencing STAT3 dramatically induced ubiquitination of C/EBPβ for proteasomal degradation. Furthermore, direct interaction between STAT3 and C/EBPβ was confirmed by immunoprecipitation and proximity ligation assays. Taken together, these results suggest that STAT3 stabilizes C/EBPβ, thereby promoting cancer-associated inflammation.

    Topics: Breast; Breast Neoplasms; CCAAT-Enhancer-Binding Protein-beta; Cell Line, Transformed; Cell Transformation, Neoplastic; Epithelial Cells; Feedback, Physiological; Female; Genes, ras; Granulocyte Colony-Stimulating Factor; Granulocyte-Macrophage Colony-Stimulating Factor; Humans; Inflammation; Interleukin-8; Neutrophils; Proteasome Endopeptidase Complex; Protein Binding; Protein Stability; Signal Transduction; STAT3 Transcription Factor; Ubiquitination

2021
Dichloromethane increases mutagenic DNA damage and transformation ability in cholangiocytes and enhances metastatic potential in cholangiocarcinoma cell lines.
    Chemico-biological interactions, 2021, Sep-01, Volume: 346

    Dichloromethane (DCM), a widely used chlorinated solvent, is classified by IARC (2017) as probably carcinogenic to humans. Exposure to DCM has been associated with increased incidence of cholangiocarcinoma (CCA) in humans. This study aimed to investigate how DCM could contribute to CCA development by investigating the effects of DCM on DNA damage and cell transformation in cholangiocytes (MMNK-1) and on metastatic potential as measured by invasion and cell migration in malignant CCA cell lines (HuCCA-1 and RMCCA-1). MMNK-1 cells treated with the non-cytotoxic concentration of DCM (25 μM, 24 h) significantly increased the levels of mutagenic DNA adducts including 8-hydroxydeoxyguanosine, 8-OHdG, (1.84-fold, p < 0.01) and 8-nitroguanine (1.96-fold, p < 0.01) and enhanced cell transformation by 1.47-fold (p < 0.01). In addition, the expression of various genes involved in carcinogenesis, namely, NFE2L2 (antioxidative response), CXCL8 (inflammation), CDH1 (cell adhesion), MMP9 (tissue remodeling) and MKI67 (cell proliferation) were altered in cholangiocytes treated with DCM. When MMNK-1 cells were transformed by DCM, the expression of all the aforementioned genes was also increased. In malignant cell lines (HuCCA-1 and RMCCA-1), DCM treatment resulted in increased CXCL8 and MMP9 transcription and decreased CDH1 transcription accompanied by increased invasion and migration capabilities of these cells. Taken together, this study demonstrated that DCM exposure could be linked to the development of CCA.

    Topics: Cell Line, Tumor; Cell Movement; Cell Transformation, Neoplastic; Cholangiocarcinoma; DNA Adducts; DNA Damage; Gene Expression; Humans; Interleukin-8; Matrix Metalloproteinase 9; Methylene Chloride; NF-E2-Related Factor 2; RNA, Messenger

2021
TGFβ Signaling Activated by Cancer-Associated Fibroblasts Determines the Histological Signature of Lung Adenocarcinoma.
    Cancer research, 2021, 09-15, Volume: 81, Issue:18

    Invasive lung adenocarcinoma (LADC) can be classified histologically as lepidic, acinar, papillary, micropapillary, or solid. Most LADC tumors manifest several of these histological subtypes, with heterogeneity being related to therapeutic resistance. We report here that in immunodeficient mice, human LADC cells form tumors with distinct histological features, MUC5AC-expressing solid-type or cytokeratin 7 (CK7)-expressing acinar-type tumors, depending on the site of development, and that a solid-to-acinar transition (SAT) could be induced by the tumor microenvironment. The TGFβ-Smad signaling pathway was activated in both tumor and stromal cells of acinar-type tumors. Immortalized cancer-associated fibroblasts (CAF) derived from acinar-type tumors induced SAT in 3D cocultures with LADC cells. Exogenous TGFβ1 or overexpression of an active form of TGFβ1 increased CK7 expression and reduced MUC5AC expression in LADC cells, and knockdown of

    Topics: Adenocarcinoma of Lung; Animals; Cancer-Associated Fibroblasts; Cell Line, Tumor; Cell Transformation, Neoplastic; Disease Models, Animal; Female; Fluorescent Antibody Technique; Heterografts; Humans; Immunohistochemistry; Interleukin-8; Mice; Models, Biological; Neoplasm Grading; Signal Transduction; Transforming Growth Factor beta; Tumor Microenvironment

2021
Whole Genome Sequencing Reveals Virulence Potentials of
    Toxins, 2020, 08-29, Volume: 12, Issue:9

    Topics: Carcinoma, Signet Ring Cell; Cell Line; Cell Transformation, Neoplastic; DNA, Bacterial; Exome Sequencing; Female; Gastric Mucosa; Helicobacter Infections; Helicobacter pylori; Humans; Interleukin-8; Kenya; Middle Aged; Phylogeny; Stomach Neoplasms; Virulence

2020
IL-8-induced O-GlcNAc modification via GLUT3 and GFAT regulates cancer stem cell-like properties in colon and lung cancer cells.
    Oncogene, 2019, Volume: 38, Issue:9

    Interleukin-8 (IL-8) is a pro-inflammatory chemokine that is associated with induction of chemotaxis and degranulation of neutrophils. IL-8 is overexpressed in many tumors, including colon and lung cancer, and recent studies demonstrated essential roles for IL-8 in tumor progression within the tumor microenvironment. However, the molecular mechanism underlying the functions of IL-8 in tumor progression is unclear. In this study, we found that IL-8 is overexpressed in colon and lung cancer cells with cancer stem cell (CSC)-like characteristics and is required for CSC properties, including tumor-initiating abilities. These findings suggest that IL-8 plays an essential role in the development of CSCs. We also showed that IL-8 stimulation of colon and lung cancer cells-induced glucose uptake and expressions of glucose transporter 3 (GLUT3) and glucosamine fructose-6-phosphate aminotransferase (GFAT), a regulator of glucose flux to the hexosamine biosynthetic pathway, resulting in enhancement of protein O-GlcNAcylation. We demonstrated that these events are required for the generation and maintenance CSC-like characteristics of colon and lung cancer cells. Moreover, an O-GlcNAcylation inhibitor, OSMI1, reduced CSC number and tumor development in vivo. Together, these results reveal that IL-8-induced O-GlcNAcylation is required for generation and maintenance of CSCs of colon and lung cancer cells and suggests this regulatory pathway as a candidate therapeutic target of CSCs.

    Topics: Acetylglucosamine; Acylation; Cell Line, Tumor; Cell Transformation, Neoplastic; Colonic Neoplasms; Glucose Transporter Type 3; Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing); Humans; Interleukin-8; Lung Neoplasms; Neoplastic Stem Cells

2019
Interleukin-8 Activates Breast Cancer-Associated Adipocytes and Promotes Their Angiogenesis- and Tumorigenesis-Promoting Effects.
    Molecular and cellular biology, 2019, 01-15, Volume: 39, Issue:2

    Increasing evidence supports the critical role of active stromal adipocytes in breast cancer development and spread. However, the mediators and the mechanisms of action are still elusive. We show here that cancer-associated adipocytes (CAAs) isolated from 10 invasive breast carcinomas are proinflammatory and exhibit active phenotypes, including higher proliferative, invasive, and migratory capacities compared to their adjacent tumor-counterpart adipocytes (TCAs). Furthermore, all CAAs secreted higher level of interleukin-8 (IL-8), which is critical in mediating the paracrine procarcinogenic effects of these cells. Importantly, ectopic expression of IL-8 in TCA cells activated them and enhanced their procarcinogenic effects both

    Topics: Adipocytes; Angiogenesis Inducing Agents; Animals; Breast Neoplasms; Carcinogenesis; Cell Line, Tumor; Cell Movement; Cell Transformation, Neoplastic; Female; Fibroblasts; Heterografts; Humans; Interleukin-8; MCF-7 Cells; Mice; Neoplasm Invasiveness; Neovascularization, Pathologic; Primary Cell Culture; Signal Transduction; STAT3 Transcription Factor; Stromal Cells

2019
Senescent Breast Luminal Cells Promote Carcinogenesis through Interleukin-8-Dependent Activation of Stromal Fibroblasts.
    Molecular and cellular biology, 2019, 01-15, Volume: 39, Issue:2

    Topics: Breast Neoplasms; Carcinogenesis; Cell Line, Tumor; Cell Movement; Cell Transformation, Neoplastic; Cellular Senescence; Epithelial-Mesenchymal Transition; Female; Fibroblasts; Humans; Interleukin-6; Interleukin-8; Myofibroblasts; Neovascularization, Pathologic; Primary Cell Culture; Signal Transduction; STAT3 Transcription Factor; Stromal Cells; Tumor Microenvironment; Tumor Suppressor Protein p53

2019
Disrupting Inflammation-Associated CXCL8-CXCR1 Signaling Inhibits Tumorigenicity Initiated by Sporadic- and Colitis-Colon Cancer Stem Cells.
    Neoplasia (New York, N.Y.), 2019, Volume: 21, Issue:3

    Dysfunctional inflammatory pathways are associated with an increased risk of cancer, including colorectal cancer. We have previously identified and enriched for a self-renewing, colon cancer stem cell (CCSC) subpopulation in primary sporadic colorectal cancers (CRC) and a related subpopulation in ulcerative colitis (UC) patients defined by the stem cell marker, aldehyde dehydrogenase (ALDH). Subsequent work demonstrated that CCSC-initiated tumors are dependent on the inflammatory chemokine, CXCL8, a known inducer of tumor proliferation, angiogenesis and invasion. Here, we use RNA interference to target CXCL8 and its receptor, CXCR1, to establish the existence of a functional signaling pathway promoting tumor growth initiated by sporadic and colitis CCSCs. Knocking down either CXCL8 or CXCR1 had a dramatic effect on inhibiting both in vitro proliferation and angiogenesis. Likewise, tumorigenicity was significantly inhibited due to reduced levels of proliferation and angiogenesis. Decreased expression of cycle cell regulators cyclins D1 and B1 along with increased p21 levels suggested that the reduction in tumor growth is due to dysregulation of cell cycle progression. Therapeutically targeting the CXCL8-CXCR1 signaling pathway has the potential to block sustained tumorigenesis by inhibiting both CCSC- and pCCSC-induced proliferation and angiogenesis.

    Topics: Animals; Biomarkers; Cell Line, Tumor; Cell Proliferation; Cell Transformation, Neoplastic; Colitis; Colonic Neoplasms; Disease Models, Animal; Gene Dosage; Gene Expression; Gene Expression Regulation, Neoplastic; Gene Knockdown Techniques; Heterografts; Humans; Immunophenotyping; Inflammation; Interleukin-8; Mice; Models, Biological; Neoplastic Stem Cells; Neovascularization, Pathologic; Receptors, Interleukin-8A; Signal Transduction

2019
CRISPR/Cas9-Mediated BRCA1 Knockdown Adipose Stem Cells Promote Breast Cancer Progression.
    Plastic and reconstructive surgery, 2019, Volume: 143, Issue:3

    The tumor microenvironment within the breast is rich in adipose elements. The interaction between adipose cells and breast cancer is poorly understood, particularly as it pertains to patients with genetic susceptibility to breast cancer. This study focuses on the phenotype of human adipose-derived stem cells with the BRCA1 mutation and the effect they may have on breast cancer cell behavior.. CRISPR/Cas9 was used to generate de novo BRCA1-knockdown human adipose-derived stem cells. The effect of the BRCA1 knockdown on the adipose-derived stem cell phenotype was compared to wild-type adipose-derived stem cells and patient-derived breast adipose-derived stem cells with known BRCA1 mutations. Interactions between adipose-derived stem cells and the MDA-MB-231 breast cancer cell line were evaluated.. BRCA1-knockdown adipose-derived stem cells stimulated MDA-MB-231 proliferation (1.4-fold increase on day 4; p = 0.0074) and invasion (2.3-fold increase on day 2; p = 0.0171) compared to wild-type cells. Immunofluorescence staining revealed higher levels of phosphorylated ataxia telangiectasia-mutated activation in BRCA1-knockdown cells (72.9 ± 5.32 percent versus 42.9 ± 4.97 percent; p = 0.0147), indicating higher levels of DNA damage. Beta-galactosidase staining demonstrated a significantly higher level of senescence in BRCA1-knockdown cells compared with wild-type cells (7.9 ± 0.25 percent versus 0.17 ± 0.17 percent; p < 0.0001). Using quantitative enzyme-linked immunosorbent assay to evaluate conditioned media, the authors found significantly higher levels of interleukin-8 in BRCA1-knockdown cells (2.57 ± 0.32-fold; p = 0.0049).. The authors show for the first time that the BRCA1 mutation affects the adipose-derived stem cell phenotype. Moreover, CRISPR/Cas9-generated BRCA1-knockdown adipose-derived stem cells stimulate a more aggressive behavior in breast cancer cells than wild-type adipose-derived stem cells. This appears to be related to increased inflammatory cytokine production by means of a DNA damage-mediated cell senescence pathway.

    Topics: Adipose Tissue; Adult; BRCA1 Protein; Breast Neoplasms; Cell Line; Cell Transformation, Neoplastic; CRISPR-Cas Systems; Culture Media, Conditioned; Disease Progression; Female; Gene Knockdown Techniques; Humans; Interleukin-8; Middle Aged; Primary Cell Culture; Stem Cells; Tumor Microenvironment

2019
Doxorubicin-Induced Cancer Cell Senescence Shows a Time Delay Effect and Is Inhibited by Epithelial-Mesenchymal Transition (EMT).
    Medical science monitor : international medical journal of experimental and clinical research, 2019, May-16, Volume: 25

    BACKGROUND Senescence is a natural barrier for the body to resist the malignant transformation of its own cells. This work investigated the senescence characteristics of cancer cells in vitro. MATERIAL AND METHODS Human cervical cancer HeLa cells were treated with different concentrations of doxorubicin for 3 days, with or without subsequent extended culture in drug-free medium for 6 days. Senescent cell ratios between these 2 culture schemes were calculated. Expression of 2 senescence-associated secretory factors, IL-6 and IL-8, were detected by RT-PCR and ELISA. Doxorubicin treatment induced epithelial-mesenchymal transition in cancer cells. The proportions of senescent cells in epithelial-like and mesenchymal-like sub-groups were calculated. Doxorubicin-treated HeLa cells were stained with Vimentin antibody and sorted by flow cytometry. Senescent cell marker p16ᴵᴺᴷ⁴ᵃ and IL-8 expression in Vimentin-high and Vimentin-low cells were detected by Western blot. RESULTS We found that less than 1% of HeLa cells showed senescence phenotype after treatment with doxorubicin for 3 days. However, the proportion of senescent cells was significantly increased when the doxorubicin-treated cells were subsequently cultured in drug-free medium for another 6d. RT-PCR and ELISA results showed that this prolonged culture method could further improve the expression of IL-6 and IL-8. We also found that the senescent cells were mainly epithelial-like type and few presented mesenchymal-like shape. p16ᴵᴺᴷ⁴ᵃ and IL-8 expression were decreased in cell fraction with higher Vimentin expression. CONCLUSIONS Our results suggested the existence of time delay effect in doxorubicin-induced senescence of HeLa cells, and epithelial- mesenchymal transition may resist doxorubicin-induced cell senescence.

    Topics: Cell Line, Tumor; Cell Transformation, Neoplastic; Cellular Senescence; Doxorubicin; Epithelial-Mesenchymal Transition; HeLa Cells; Humans; Interleukin-6; Interleukin-8; Neoplasms; Time Factors; Vimentin

2019
Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer.
    Nature communications, 2018, 01-15, Volume: 9, Issue:1

    The communication between tumor-derived elements and stroma in the metastatic niche has a critical role in facilitating cancer metastasis. Yet, the mechanisms tumor cells use to control metastatic niche formation are not fully understood. Here we report that in the lung metastatic niche, high-metastatic hepatocellular carcinoma (HCC) cells exhibit a greater capacity to convert normal fibroblasts to cancer-associated fibroblasts (CAFs) than low-metastatic HCC cells. We show high-metastatic HCC cells secrete exosomal miR-1247-3p that directly targets B4GALT3, leading to activation of β1-integrin-NF-κB signaling in fibroblasts. Activated CAFs further promote cancer progression by secreting pro-inflammatory cytokines, including IL-6 and IL-8. Clinical data show high serum exosomal miR-1247-3p levels correlate with lung metastasis in HCC patients. These results demonstrate intercellular crosstalk between tumor cells and fibroblasts is mediated by tumor-derived exosomes that control lung metastasis of HCC, providing potential targets for prevention and treatment of cancer metastasis.

    Topics: Animals; Cancer-Associated Fibroblasts; Carcinoma, Hepatocellular; Cell Communication; Cell Line, Tumor; Cell Transformation, Neoplastic; Exosomes; Gene Expression Regulation, Neoplastic; Humans; Integrin beta1; Interleukin-6; Interleukin-8; Liver Neoplasms; Lung Neoplasms; Male; Mice; Mice, Nude; MicroRNAs; N-Acetyllactosamine Synthase; Neoplasm Invasiveness; Neoplasm Transplantation; Neoplastic Cells, Circulating; Signal Transduction

2018
Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS-HIF-1α-AQP3-ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis.
    Oncogene, 2018, Volume: 37, Issue:26

    Helicobacter pylori (H. pylori) is the major stomach carcinogen, but the molecular mechanism responsible for the pathogenesis of cancer development mediated by H. pylori infection is still unclear. Aquaporin 3 (AQP3), overexpressed in gastric carcinoma, has a crucial role in gastric carcinogenesis and progression. However, the triggers and precise regulations for AQP3 upregulation during gastric carcinogens also remain unknown. Here we report that H. pylori infection-mediated carcinogenesis may be mechanistically depended on the upregulation of AQP3 expression via reactive oxygen species (ROS) pathway activation in the stomach. The retrospective analyses of clinical samples from patients with gastric carcinoma and other different stages of gastric diseases indicated that AQP3 expression was positively associated with gastric mucosal disease progression and H. pylori infection status as well. Furthermore, H. pylori infection significantly upregulated AQP3 and HIF-1α expression and increased ROS amount in human gastric epithelial AGS and GES-1 cells. Blockage of ROS with inhibitors, NAC and DPI, markedly decreased the expression of AQP3 and HIF-1α in both AGS and GES-1 cells simultaneously. Furthermore, the increased AQP3 in cells was mechanistically due to the transcriptional regulation by HIF-1α. In addition, H. pylori infection exerted production of proinflammatory cytokines IL-6, IL-8, and TNF depending on AQP3 level. Importantly, these in vitro novel findings were further investigated in vivo in a mouse H. pylori infectious model. Our current studies identify the mechanistic link between H. pylori infection and AQP3 upregulation in the pathogenesis of gastric carcinoma, which involves the activation of the ROS-HIF-1α axis and the exacerbated ROS-HIF-1α-AQP3-ROS loop.

    Topics: Aged; Animals; Aquaporin 3; Cell Line, Tumor; Cell Transformation, Neoplastic; Epithelial Cells; Female; Gastric Mucosa; Helicobacter Infections; Helicobacter pylori; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Interleukin-6; Interleukin-8; Male; Mice; Mice, Inbred C57BL; Middle Aged; Reactive Oxygen Species; Stomach Neoplasms; Tumor Necrosis Factor-alpha

2018
Leukocytes as a reservoir of circulating oncogenic DNA and regulatory targets of tumor-derived extracellular vesicles.
    Journal of thrombosis and haemostasis : JTH, 2018, Volume: 16, Issue:9

    Essentials Tumor-bearing mice were employed to follow oncogenic HRAS sequences in plasma, and blood cells. Cancer DNA accumulated in leukocytes above levels detected in exosomes, platelets and plasma. Extracellular vesicles and nucleosomes are required for uptake of tumor DNA by leukocytes. Uptake of tumor-derived extracellular vesicles by leukocytes triggers coagulant phenotype.. Background Tumor-derived extracellular vesicles (EVs) and free nucleosomes (NSs) carry into the circulation a wealth of cancer-specific, bioactive and poorly understood molecular cargoes, including genomic DNA (gDNA). Objective Here we investigated the distribution of extracellular oncogenic gDNA sequences (HRAS and HER2) in the circulation of tumor-bearing mice. Methods and Results Surprisingly, circulating leukocytes (WBCs), especially neutrophils, contained the highest levels of mutant gDNA, which exceeded the amount of this material recovered from soluble fractions of plasma, circulating EVs, platelets, red blood cells (RBCs) and peripheral organs, as quantified by digital droplet PCR (ddPCR). Tumor excision resulted in disappearance of the WBC-associated gDNA signal within 2-9 days, which is in line with the expected half-life of these cells. EVs and nucleosomes were essential for the uptake of tumor-derived extracellular DNA by neutrophil-like cells and impacted their phenotype. Indeed, the exposure of granulocytic HL-60 cells to EVs from HRAS-driven cancer cells resulted in a selective increase in tissue factor (TF) procoagulant activity and interleukin 8 (IL-8) production. The levels of circulating thrombin-antithrombin complexes (TAT) were markedly elevated in mice harboring HRAS-driven xenografts. Conclusions Myeloid cells may represent a hitherto unrecognized reservoir of cancer-derived, EV/NS-associated oncogenic gDNA in the circulation, and a possible novel platform for liquid biopsy in cancer. In addition, uptake of this material alters the phenotype of myeloid cells, induces procoagulant and proinflammatory activity and may contribute to systemic effects associated with cancer.

    Topics: Animals; Antithrombin III; Blood Platelets; Breast Neoplasms; Cell Line, Tumor; Cell Survival; Cell Transformation, Neoplastic; DNA, Neoplasm; Exosomes; Extracellular Vesicles; Female; Genes, erbB-2; Genes, ras; Heterografts; HL-60 Cells; Humans; Interleukin-8; Mice; Mice, SCID; Myeloid Cells; Neoplasm Transplantation; Neutrophils; Nucleosomes; Peptide Hydrolases; Plasma; Rats; THP-1 Cells; Thromboplastin; Tumor Burden

2018
Insulin-like growth factor-II mRNA binding protein-3 and podoplanin expression are associated with bone invasion and prognosis in oral squamous cell carcinoma.
    Archives of oral biology, 2016, Volume: 69

    This study aimed to evaluate the prognostic implications of insulin-like growth factor-II mRNA binding protein-3 (IMP3) and podoplanin (PDPN) as therapeutic targets against oral squamous cell carcinoma (OSCC) with bone invasion.. We elucidated the correlation of IMP3 and PDPN expression with bone invasion in 160 OSCC tissue specimens, and assessed a mouse calvarium xenograft model using an IMP3- and PDPN-depleted OSCC cell line.. The retrospective analysis revealed that the expression of IMP3 and PDPN is significantly correlated with T stage, lymph node metastasis, and the overall survival of OSCC patients. In addition, the dual expression of IMP3 and PDPN but not the single expression of either IMP3 or PDPN was associated with bone invasion and the number of osteoclasts in patients with OSCC. In support of these findings, IMP3 or PDPN depletion inhibited the invasive capacity of OSCC cells in a three-dimensional culture system, tumorigenesis, and regional bone destruction in a xenograft mouse model. In addition, IMP3 or PDPN depletion inhibited the expression of interleukin (IL)-6 and IL-8 in OSCC cells, and decreased the expression of receptor activator of NF-κB ligand (RANKL) in xenograft tumor tissues of OSCC.. These results suggest that IMP3 and PDPN may have strong influence on the pathogenesis of OSCC, especially in bone invasion, and may serve as novel therapeutic targets with prognostic implications for bone-invasive OSCC.

    Topics: Adult; Aged; Aged, 80 and over; Animals; Bone Neoplasms; Carcinoma, Squamous Cell; Cell Transformation, Neoplastic; Female; Head and Neck Neoplasms; Heterografts; Humans; Interleukin-11; Interleukin-6; Interleukin-8; Lymphatic Metastasis; Male; Membrane Glycoproteins; Mice; Middle Aged; Mouth Neoplasms; Osteoclasts; Prognosis; RANK Ligand; Receptor Activator of Nuclear Factor-kappa B; Retrospective Studies; RNA-Binding Proteins; RNA, Messenger; Squamous Cell Carcinoma of Head and Neck

2016
Neuroendocrine differentiation of prostate cancer.
    Asian journal of andrology, 2013, Volume: 15, Issue:3

    Topics: Adenocarcinoma; Animals; Carcinoma, Neuroendocrine; Cell Line, Tumor; Cell Transformation, Neoplastic; Genes, Retinoblastoma; Humans; Interleukin-8; Male; Mice; Mutation; Neuroendocrine Cells; Prostatic Neoplasms; Receptors, Interleukin-8B; Signal Transduction; Tumor Suppressor Protein p53

2013
Repression of miR-143 mediates Cr (VI)-induced tumor angiogenesis via IGF-IR/IRS1/ERK/IL-8 pathway.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 134, Issue:1

    Hexavalent chromium [Cr (VI)] is a well-known human carcinogen associated with the increased risk of lung cancer. However, the mechanism underlying the Cr (VI)-induced carcinogenesis remains unclear due to the lack of suitable experimental models. In this study, we developed an in vitro model by transforming nontumorigenic human lung epithelial BEAS-2B cells through long-term exposure to Cr (VI). By utilizing this model, we found that miR-143 expression levels were dramatically repressed in Cr (VI)-transformed cells. The repression of miR-143 led to Cr (VI)-induced cell malignant transformation and angiogenesis via upregulation of insulin-like growth factor-1 receptor (IGF-IR) and insulin receptor substrate-1 (IRS1) expression. Moreover, we found that interleukin-8 is the major upregulated angiogenesis factor induced by Cr (VI) through activation of IGF-IR/IRS1 axis followed by activation of downstream ERK/hypoxia-induced factor-1α/NF-κB signaling pathway. These findings establish a causal role and mechanism of miR-143 in regulating Cr (VI)-induced malignant transformation and tumor angiogenesis.

    Topics: Animals; Carcinogens, Environmental; Cell Line; Cell Transformation, Neoplastic; Chromium; Down-Regulation; Epithelial Cells; Humans; Insulin Receptor Substrate Proteins; Interleukin-8; Lung Neoplasms; Male; MAP Kinase Signaling System; Mice; Mice, Inbred BALB C; Mice, Nude; MicroRNAs; Neovascularization, Pathologic; Receptor, IGF Type 1; Up-Regulation

2013
H. pylori CagL-Y58/E59 prime higher integrin α5β1 in adverse pH condition to enhance hypochlorhydria vicious cycle for gastric carcinogenesis.
    PloS one, 2013, Volume: 8, Issue:8

    H. pylori CagL amino acid polymorphisms such as Y58/E59 can increase integrin α5β1 expression and gastric cancer risk. Hypochlorhydria during chronic H. pylori infection promotes gastric carcinogenesis. The study test whether CagL-Y58/E59 isolates may regulate integrin α5β1 to translocate CagA via the type IV secretory system even under adverse pH conditions, and whether the integrin α5β1 expression primed by H. pylori is a pH-dependent process involving hypochlorhydria in a vicious cycle to promote gastric carcinogenesis.. The expressions of integrin α5 and β1, CagA phosphorylation, IL-8, FAK, EGFR, and AKT activation of AGS cells exposed to CagL-Y58/E59 H. pylori, isogenic mutants, and different H. pylori CagL amino acid replacement mutants under different pH values were determined. Differences in the pepsinogen I/II ratio (indirectly indicating gastric acidity) and gastric integrin α5β1 expression were compared among the 172 H. pylori-infected patients with different cancer risks.. Even under adversely low pH condition, H. pylori CagL-Y58/E59 still keep active integrin β1 with stronger binding affinity, CagA translocation, IL-8, FAK, EGFR, and AKT activation than the other mutants (p<0.05). The in vitro assay revealed higher priming of integrin α5β1 by H. pylori under elevated pH as hypochlorhydria (p<0.05). In the H. pylori-infected patients, the gastric integrin α5β1 expressions were higher in those with pepsinogen I/II ratio <6 than in those without (p<0.05).. H. pylori CagL-Y58/E59 prime higher integrin under adverse pH and may involve to enhance hypochlorhydria vicious cycle for gastric carcinogenesis, and thus require an early eradication.

    Topics: Achlorhydria; Adult; Aged; Bacterial Proteins; Cell Transformation, Neoplastic; ErbB Receptors; Female; Helicobacter Infections; Helicobacter pylori; Humans; Hydrogen-Ion Concentration; Integrin alpha5beta1; Interleukin-8; Male; Middle Aged; Models, Biological; Mutation; Pepsinogen A; Pepsinogen C; Phosphorylation; Protein Binding; Protein Transport; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-akt; Signal Transduction; Stomach Neoplasms

2013
Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis.
    Gastroenterology, 2013, Volume: 144, Issue:1

    Interleukin (IL)-8 has an important role in initiating inflammation in humans, attracting immune cells such as neutrophils through their receptors CXCR1 and CXCR2. IL-8 has been proposed to contribute to chronic inflammation and cancer. However, mice do not have the IL-8 gene, so human cancer cell lines and xenograft studies have been used to study the role of IL-8 in colon and gastric carcinogenesis. We generated mice that carry a bacterial artificial chromosome that encompasses the entire human IL-8 gene, including its regulatory elements (IL-8Tg mice).. We studied the effects of IL-8 expression in APCmin(+/-) mice and IL-8Tg mice given azoxymethane and dextran sodium sulfate (DSS). We also examined the effects of IL-8 expression in gastric cancer in INS-GAS mice that overexpress gastrin and IL-8Tg mice infected with Helicobacter felis.. In IL-8Tg mice, expression of human IL-8 was controlled by its own regulatory elements, with virtually no messenger RNA or protein detectable under basal conditions. IL-8 was strongly up-regulated on systemic or local inflammatory stimulation, increasing mobilization of immature CD11b(+)Gr-1(+) myeloid cells (IMCs) with thioglycolate-induced peritonitis, DSS-induced colitis, and H. felis-induced gastritis. IL-8 was increased in colorectal tumors from patients and IL-8Tg mice compared with nontumor tissues. IL-8Tg mice developed more tumors than wild-type mice following administration of azoxymethane and DSS. Expression of IL-8 increased tumorigenesis in APCmin(+/-) mice compared with APCmin(+/-) mice that lack IL-8; this was associated with increased numbers of IMCs and angiogenesis in the tumors.. IL-8 contributes to gastrointestinal carcinogenesis by mobilizing IMCs and might be a therapeutic target for gastrointestinal cancers.

    Topics: Animals; Azoxymethane; Cell Line, Tumor; Cell Movement; Cell Transformation, Neoplastic; Colitis; Colonic Neoplasms; Dendritic Cells; Dextran Sulfate; Gastritis; Helicobacter felis; Helicobacter Infections; Humans; Interleukin-8; Lipopolysaccharides; Macrophages; Mice; Mice, Transgenic; Myeloid Cells; Primary Cell Culture; RNA, Messenger; Tumor Burden; Up-Regulation

2013
Overexpression of the human ZNF300 gene enhances growth and metastasis of cancer cells through activating NF-kB pathway.
    Journal of cellular and molecular medicine, 2012, Volume: 16, Issue:5

    Zinc finger proteins (ZNF) play important roles in various physiological processes. Here we report that ZNF300, a novel zinc finger protein, identified specifically in humans, promotes tumour development by modulating the NF-κB pathway. Inflammatory factors were found to induce ZNF300 expression in HeLa cell line, and ZNF300 expression further enhanced NF-κB signalling by activating TRAF2 and physically interacting with IKKβ. Furthermore, ZNF300 overexpression increased ERK1/2 phosphorylation and the expression of c-myc, IL-6, and IL-8 but decreased the expression of p21(waf-1) and p27(Kip1) ; whose down-regulation led to the opposite effect. Most importantly, ZNF300 overexpression stimulated cancer cell proliferation in vitro and significantly enhanced tumour development and metastasis in mouse xenograft model, while knocking down ZNF300 led to the opposite effects. We have identified a novel function for ZNF300 in tumour development that may uniquely link inflammation and NF-κB to tumourigenesis in humans but not in mice.

    Topics: Animals; Cell Proliferation; Cell Transformation, Neoplastic; Cyclin-Dependent Kinase Inhibitor p27; DNA-Binding Proteins; Female; Gene Expression Regulation, Neoplastic; Gene Knockdown Techniques; HeLa Cells; Humans; I-kappa B Kinase; Interleukin-6; Interleukin-8; MAP Kinase Signaling System; Mice; Mice, Nude; Neoplasm Metastasis; NF-kappa B; Proto-Oncogene Proteins c-myc; Repressor Proteins; Signal Transduction; TNF Receptor-Associated Factor 2; Transcription Factors; Xenograft Model Antitumor Assays

2012
Association of the OCTN1/1672T variant with increased risk for colorectal cancer in young individuals and ulcerative colitis patients.
    Inflammatory bowel diseases, 2012, Volume: 18, Issue:3

    Ulcerative colitis (UC) is associated with colorectal cancer. Chronic inflammation may also play a role in the pathogenesis of sporadic colorectal cancer (SCC), particularly in younger patients (<55 years). We evaluated whether single nucleotide polymorphisms of the OCTN1 and OCTN2 genes are associated with UC, SCC, and with UC cases with cancer progression (UCCP).. We evaluated the OCTN1 and OCTN2 polymorphisms in 200 patients with UC, 59 patients with UCCP, 200 patients with SCC, and 200 controls (HC). IL-8 expression was also assessed by real-time polymerase chain reaction (PCR). Additionally, we transfected human colon carcinoma Caco2 cells, homozygous for OCTN1/1672T variant, with the OCTN1/1672C allele and NF-κB activity was evaluated by luciferase based reporter assay and IL-8 mRNA expression by real-time PCR.. OCTN2 polymorphisms did not present a significant association with any group of patients compared to normal controls. Conversely, homozygosity for the OCTN1/1672T variant was significantly associated with UC (P = 0.047 vs. HC), with UCCP (UCCP vs. HC, P < 0.001), and with SCC developing in early age (<55 years) (P = 0.021 vs. HC). Importantly, IL-8 mRNA expression was higher in UC and UCCP patients homozygous for the OCTN1 1672T variant compared to the other genotypes. Moreover, in Caco2 cells transfection of the OCTN1/1672C variant reduced the activity of the proinflammatory factor NF-κB.. Our data demonstrate that OCTN1 could have a role in modulating the severity of chronic inflammation associated with SCC in early age and in UC patients, and that its polymorphisms may help to predict malignant progression of IBD.

    Topics: Caco-2 Cells; Cell Transformation, Neoplastic; Chi-Square Distribution; Colitis, Ulcerative; Colorectal Neoplasms; Disease Progression; Female; Humans; Interleukin-8; Male; Middle Aged; NF-kappa B; Organic Cation Transport Proteins; Polymorphism, Single Nucleotide; RNA, Messenger; Solute Carrier Family 22 Member 5; Statistics, Nonparametric; Symporters

2012
Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells.
    Toxicology and applied pharmacology, 2012, Jan-01, Volume: 258, Issue:1

    The association between chronic human exposure to arsenicals and bladder cancer development is well recognized; however, the underlying molecular mechanisms have not been fully determined. We propose that inflammatory responses can play a pathogenic role in arsenic-related bladder carcinogenesis. In previous studies, it was demonstrated that chronic exposure to 50 nM monomethylarsenous acid [MMA(III)] leads to malignant transformation of an immortalized model of urothelial cells (UROtsa), with only 3 mo of exposure necessary to trigger the transformation-related changes. In the three-month window of exposure, the cells over-expressed pro-inflammatory cytokines (IL-1β, IL-6 and IL-8), consistent with the sustained activation of NFKβ and AP1/c-jun, ERK2, and STAT3. IL-8 was over-expressed within hours after exposure to MMA(III), and sustained over-expression was observed during chronic exposure. In this study, we profiled IL-8 expression in UROtsa cells exposed to 50 nM MMA(III) for 1 to 5 mo. IL-8 expression was increased mainly in cells after 3 mo MMA(III) exposure, and its production was also found increased in tumors derived from these cells after heterotransplantation in SCID mice. UROtsa cells do express both receptors, CXCR1 and CXCR2, suggesting that autocrine cell activation could be important in cell transformation. Supporting this observation and consistent with IL-8 over-expression, CXCR1 internalization was significantly increased after three months of exposure to MMA(III). The expression of MMP-9, cyclin D1, bcl-2, and VGEF was significantly increased in cells exposed to MMA(III) for 3 mo, but these mitogen-activated kinases were significantly decreased after IL-8 gene silencing, together with a decrease in cell proliferation rate and in anchorage-independent colony formation. These results suggest a relevant role of IL-8 in MMA(III)-induced UROtsa cell transformation.

    Topics: Animals; Cell Proliferation; Cell Transformation, Neoplastic; Cells, Cultured; Humans; Interleukin-8; Male; Mice; Mice, SCID; Neoplasm Invasiveness; Organometallic Compounds; Receptors, Interleukin-8A; Receptors, Interleukin-8B; Urinary Bladder Neoplasms; Urothelium

2012
Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer.
    Oncogene, 2012, Jun-28, Volume: 31, Issue:26

    Chitinase 3-like 1 (CHI3L1), one of the mammalian members of the chitinase family, is expressed in several types of human cancer, and elevated serum level of CHI3L1 is suggested to be a biomarker of poor prognosis in advanced cancer patients. However, the overall biological function of CHI3L1 in human cancers still remains unknown. Studies were performed to characterize the role of CHI3L1 in cancer pathophysiology utilizing human colorectal cancer samples and human cell lines. Plasma protein and tissue mRNA expression levels of CHI3L1 in colorectal cancer were strongly upregulated. Immunohistochemical analysis showed that CHI3L1 was expressed in cancer cells, and CHI3L1 expression had a significant association with the number of infiltrated macrophages and microvessel density (MVD). By utilizing transwell migration and tube-formation assays, overexpression of CHI3L1 in SW480 cells (human colon cancer cells) enhanced the migration of THP-1 cells (human macrophage cells) and HUVECs (human endothelial cells), and the tube formation of HUVECs. The knockdown of CHI3L1 by RNA interference or the neutralization of CHI3L1 by anti-CHI3L1 antibody displayed strong suppression of CHI3L1-induced migration and tube formation. Cell proliferation assay showed that CHI3L1 overexpression significantly enhanced the proliferation of SW480 cells. Enzyme-linked immunosorbent assay (ELISA) analysis showed that CHI3L1 increased the secretion of inflammatory chemokines, IL-8 and monocyte chemoattractant protein-1 (MCP-1), from SW480 cells through mitogen-activated protein kinase (MAPK) signaling pathway. Both neutralization of IL-8 or MCP-1 and inhibition or knockdown of MAPK in SW480 cells significantly inhibited CHI3L1-induced migration and tube formation. In a xenograft mouse model, overexpression of CHI3L1 in HCT116 cells (human colon cancer cells) enhanced the tumor growth as well as macrophage infiltration and MVD. In conclusion, CHI3L1 expressed in colon cancer cells promotes cancer cell proliferation, macrophage recruitment and angiogenesis. Thus, the inhibition of CHI3L1 activity may be a novel therapeutic strategy for human colorectal cancer.

    Topics: Adipokines; Aged; Animals; Cell Line, Tumor; Cell Proliferation; Cell Transformation, Neoplastic; Chemokine CCL2; Chemotaxis; Chitinase-3-Like Protein 1; Colorectal Neoplasms; Disease Progression; Endothelial Cells; Gene Expression Regulation, Neoplastic; Humans; Interleukin-8; Lectins; Macrophages; MAP Kinase Signaling System; Mice; Middle Aged; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neovascularization, Pathologic; Tumor Microenvironment

2012
Enforced expression of nuclear factor kappa B in p53 deficient keratinocytes induces cell cycle, angiogenic potential and tumorigenesis.
    Oral oncology, 2012, Volume: 48, Issue:4

    Multiple genetic mutations with subsequent molecular events are required for progression of normal epithelial cells to cancer, with p53 mutations being a very common event in squamous carcinogenesis. Upregulation of nuclear factor kappa B (NF-κB) is an associated feature of malignancy, however studies have not examined purposeful overexpression of the NF-κB p65 subunit in in vitro models of oral carcinogenesis. Our objective is to demonstrate that NF-κB p65 transfection into p53 deficient Rhek keratinocytes produces carcinogenic progression. We constitutively over-expressed NF-κB p65 in Rhek keratinocytes, previously immortalized by SV 40 thus inactivating p53, and studied NF-κB dependent events. NF-κB p65 overexpression provided functional upregulation of NF-κB and produced cyclin D1-mediated proliferation and interleukin 8 transcription and secretion. Consequently, we demonstrated tumorigenesis in athymic mice with NF-κB p65 overexpressing cells. We conclude NF-κB p65 overexpression in p53 inactivated immortalized keratinocytes produces tumorigenesis, and that this single alteration in NF-κB expression on a p53 inactivated background is sufficient for squamous carcinogenesis features, thus providing evidence that p65 may act as a gain of function oncogene in this setting.

    Topics: Animals; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Transformation, Neoplastic; Cyclin D1; Disease Models, Animal; Female; Humans; Interleukin-8; Keratinocytes; Mice; Mice, Nude; NF-kappa B; Vascular Endothelial Growth Factor A

2012
Butein impairs the protumorigenic activity of malignant pleural mesothelioma cells.
    Cell cycle (Georgetown, Tex.), 2012, Jan-01, Volume: 11, Issue:1

    Chronic inflammation appears to be a driving force behind cancer progression. NFκB and STAT3 activation plays a pertinent role in this process by mediating chemoresistance and the acquisition of mesenchymal features of protumorigenic cells. Epidemiological data and experimental observations suggest that Malignant Pleural Mesothelioma (MPM) is a prototype of chronic inflammation-driven cancer. Chemoresistance is a major feature of MPM. Thus, this paper explores the effect of butein (3,4,2',4'-tetrahydroxychalcone), a naturally occurring NFκB and STAT3 inhibitor, on the tumorigenic properties of MPM cells. MPM cells harbor high nuclear levels of NFκB and pSTAT3(Y(705)). Butein inhibits pSTAT3(Y(705)) phosphorylation, nuclear localization of NFκB and the physical interaction of NFκB and pSTAT3. This correlates with a downregulation of several genes involved in cancer progression (such as ICAM1, Vimentin, MMP9, Twist) of proangiogenic cytokines (VEGF) and of IL-6 and IL-8, key growth factors for MPM. Hence, butein inhibits the migration of MPM cells and strongly affects the clonogenicity of MPM cells in vitro. Finally, we show that the in vitro actions of butein translate into anticancer effects in vivo. In fact, butein treatment severely affects tumor engraftment and potentiates the anticancer effects of pemetrexed in mouse xenograft models. Butein does not significantly affect the viability of human, untransformed mesothelial cells in vitro, nor does it affect survival of tumor-free mice in vivo. The possibility of using butein as an additional treatment to current MPM therapies is discussed here.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Transformation, Neoplastic; Chalcones; Down-Regulation; Glutamates; Guanine; Humans; Intercellular Adhesion Molecule-1; Interleukin-6; Interleukin-8; Matrix Metalloproteinase 9; Mesothelioma; Mice; Mice, Nude; NF-kappa B; Pemetrexed; Phosphorylation; Pleural Neoplasms; STAT3 Transcription Factor; Transplantation, Heterologous; Twist-Related Protein 1; Vascular Endothelial Growth Factor A; Vimentin

2012
Interleukin-8 secretion by ovarian cancer cells increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion.
    Cytokine, 2012, Volume: 59, Issue:1

    It has been shown that IL-8 is elevated in ovarian cyst fluid, ascites, serum, and tumor tissue from ovarian cancer (OVCA) patients, and increased IL-8 expression correlates with poor prognosis and survival. However, the exact role that IL-8 plays in this malignancy or whether IL-8 can regulate malignant behavior has not been established. Here we demonstrate that overexpression of IL-8 in non-IL-8-expressing A2780 cells (by transfecting with plasmid encoding for sense IL-8) increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion while depletion of endogenous IL-8 expression in IL-8-overexpressing SKOV-3 cells (by transfecting with plasmid encoding for antisense IL-8) decreases the above effects. Further investigation indicates that IL-8-stimulated cell proliferation correlates with alteration of cell cycle distribution by increasing levels of cell cycle-regulated Cyclin D1 and Cyclin B1 proteins as well as activation of PI3K/Akt and Raf/MEK/ERK, whereas IL-8-enhanced OVCA cell invasive correlates with increased MMP-2 and MMP-9 activity and expression. Our data suggest that IL-8 secreted by OVCA cells promotes malignant behavior of these cells via inducing intracellular molecular signaling. Therefore, modulation of IL-8 expression or its related signaling pathway may be a promising strategy for controlling the progression and metastasis of OVCA.

    Topics: Cell Adhesion; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Transformation, Neoplastic; Cyclin B1; Cyclin D1; Female; Gene Expression Regulation, Neoplastic; Humans; Interleukin-8; MAP Kinase Signaling System; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Neoplasm Invasiveness; Neovascularization, Pathologic; Ovarian Neoplasms; Phenotype; RNA, Messenger; Transfection; Vascular Endothelial Growth Factor A

2012
Combined administration of EGCG and IL-1 receptor antagonist efficiently downregulates IL-1-induced tumorigenic factors in U-2 OS human osteosarcoma cells.
    International journal of oncology, 2012, Volume: 41, Issue:2

    Chronic inflammation represents one of the hallmarks of cancer. Of special relevance to the malignant process is the pro-inflammatory cytokine IL-1 playing a crucial role in cancer-related inflammation. Recent observations indicate increased IL-1 levels in an animal model of human osteosarcoma, the most frequent primary malignant bone tumor in man. In patients with bone sarcomas, increased serum levels of tumor-promoting cytokines, including IL-6, IL-8 and VEGF can be found, correlating with poor overall survival. The link between cancer and inflammation makes it clear that there is a need to reduce the external factors inducing inflammation as a preventive or therapeutical measure. Therefore, in the present study the effects of anti-inflammatory IL-1 receptor antagonist (IL-1Ra) was tested alone and in combination with (-)-epigallocatechin-3-gallate (EGCG), an anti-inflammatory chemopreventive agent from green tea, on the production of IL-1-induced tumorigenic factors in U-2 OS human osteosarcoma cells. We found that IL-1Ra and EGCG downregulated IL-1-induced IL-6 and IL-8 release from U-2 OS cells by 65-85%. IL-1Ra and EGCG also reduced secretion of invasiveness-promoting MMP-2 and pro-angiogenic VEGF to 62-75% without affecting the metabolic response and caspase-3 activity. In conclusion, downregulation of IL-1-induced tumorigenic factors (IL-6, IL-8, VEGF, MMP-2) in U-2 OS by IL-1Ra and EGCG may positively affect tumor-associated inflammation and, as a consequence, lead to reduction in angiogenesis and invasiveness. This renders a combined administration of EGCG and IL-1Ra a promising approach as an adjuvant therapy in patients with osteosarcoma.

    Topics: Antineoplastic Agents; Caspase 3; Catechin; Cell Line, Tumor; Cell Survival; Cell Transformation, Neoplastic; Drug Synergism; Enzyme Activation; Humans; Interleukin 1 Receptor Antagonist Protein; Interleukin-1; Interleukin-6; Interleukin-8; Matrix Metalloproteinase 2; Osteosarcoma; Receptors, Interleukin-1; Vascular Endothelial Growth Factor A

2012
Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer.
    PloS one, 2012, Volume: 7, Issue:7

    At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.

    Topics: Animals; Blood Vessels; Cell Line, Tumor; Cell Proliferation; Cell Transformation, Neoplastic; Gene Knockdown Techniques; Humans; Interleukin-8; Male; Mice; Mice, Nude; Neovascularization, Pathologic; Pancreatic Neoplasms; Paracrine Communication; Proto-Oncogene Proteins c-met; RNA Interference; Signal Transduction

2012
Fluoxetine inhibits NF-κB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice.
    American journal of physiology. Gastrointestinal and liver physiology, 2011, Volume: 301, Issue:1

    Although fluoxetine, a selective serotonin reuptake inhibitor, is known to demonstrate anti-inflammatory activity, little information is available on the effect of fluoxetine regarding intestinal inflammation. This study investigates the role of fluoxetine in the attenuation of acute murine colitis by suppression of the NF-κB pathway in intestinal epithelial cells (IEC). Fluoxetine significantly inhibited activated NF-κB signals and the upregulated expression of interleukin-8 (IL-8) in COLO 205 colon epithelial cells stimulated with tumor necrosis factor-α (TNF-α). Pretreatment with fluoxetine attenuated the increased IκB kinase (IKK) and IκBα phosphorylation induced by TNF-α. In a murine model, administration of fluoxetine significantly reduced the severity of dextran sulfate sodium (DSS)-induced colitis, as assessed by the disease activity index, colon length, and histology. In addition, the DSS-induced phospho-IKK activation, myeloperoxidase activity, a parameter of neutrophil accumulation, and the secretion of macrophage-inflammatory protein-2, a mouse homolog of IL-8, were significantly decreased in fluoxetine-pretreated mice. Moreover, fluoxetine significantly attenuated the development of colon cancer in mice inoculated with azoxymethane and DSS. These results indicate that fluoxetine inhibits NF-κB activation in IEC and that it ameliorates DSS-induced acute murine colitis and colitis-associated tumorigenesis, suggesting that fluoxetine is a potential therapeutic agent for the treatment of inflammatory bowel disease.

    Topics: Animals; Cell Line; Cell Transformation, Neoplastic; Colitis; Colonic Neoplasms; Fluoxetine; Humans; I-kappa B Kinase; Interleukin-8; Intestinal Mucosa; Male; Mice; Mice, Inbred C57BL; Neutrophils; NF-kappa B; Peroxidase; Selective Serotonin Reuptake Inhibitors; Severity of Illness Index; Signal Transduction; Tumor Necrosis Factor-alpha

2011
Flagellin promotes the proliferation of gastric cancer cells via the Toll-like receptor 5.
    International journal of molecular medicine, 2011, Volume: 28, Issue:1

    Signaling of the Toll-like receptor (TLR) is closely associated with tumor development and progression processes including cell proliferation, angiogenesis, metastasis, and immunosuppression. In this study, we examined the expression of TLR5 in gastric cancer cells and its function in cell proliferation. RT-PCR revealed that the TLR5 gene was expressed in all gastric cancer cell lines examined, SNU638, SNU601, SNU216, and AGS. The TLR5 agonist, flagellin, induced IL-8 production and NF-κB activation in the gastric cancer cell lines. In addition, flagellin enhanced the proliferation of all gastric cancer cells examined, whereas LPS did not affect that of SNU638 cells. Blockade of TLR5 using an antibody, restored the proliferation of SNU638 cells enhanced by flagellin, indicating that TLR5 is essential for cell proliferation by flagellin. Flagellin also led to phosphorylation of ERK in SNU638 cells. The ERK inhibitor, PD98059, restored the proliferation ability of SNU638 cells enhanced by flagellin, suggesting that ERK may play an important role in the proliferation of gastric cancer cells. These findings suggest that TLR5 may play an important role in tumor progression of gastric cancer via the regulation of cell proliferation.

    Topics: Cell Line, Tumor; Cell Transformation, Neoplastic; Flagellin; Flavonoids; Humans; Interleukin-8; MAP Kinase Kinase Kinase 3; Signal Transduction; Stomach Neoplasms; Toll-Like Receptor 5

2011
Plexin-B1 activates NF-κB and IL-8 to promote a pro-angiogenic response in endothelial cells.
    PloS one, 2011, Volume: 6, Issue:10

    The semaphorins and their receptors, the plexins, are proteins related to c-Met and the scatter factors that have been implicated in an expanding signal transduction network involving co-receptors, RhoA and Ras activation and deactivation, and phosphorylation events. Our previous work has demonstrated that Semaphorin 4D (Sema4D) acts through its receptor, Plexin-B1, on endothelial cells to promote angiogenesis in a RhoA and Akt-dependent manner. Since NF-κB has been linked to promotion of angiogenesis and can be activated by Akt in some contexts, we wanted to examine NF-κB in Sema4D treated cells to determine if there was biological significance for the pro-angiogenic phenotype observed in endothelium.. Using RNA interference techniques, gel shifts and NF-κB reporter assays, we demonstrated NF-κB translocation to the nucleus in Sema4D treated endothelial cells occurring downstream of Plexin-B1. This response was necessary for endothelial cell migration and capillary tube formation and protected endothelial cells against apoptosis as well, but had no effect on cell proliferation. We dissected Plexin-B1 signaling with chimeric receptor constructs and discovered that the ability to activate NF-κB was dependent upon Plexin-B1 acting through Rho and Akt, but did not involve its role as a Ras inhibitor. Indeed, inhibition of Rho by C3 toxin and Akt by LY294002 blocked Sema4D-mediated endothelial cell migration and tubulogenesis. We also observed that Sema4D treatment of endothelial cells induced production of the NF-κB downstream target IL-8, a response necessary for angiogenesis. Finally, we could show through co-immunofluorescence for p65 and CD31 that Sema4D produced by tumor xenografts in nude mice activated NF-κB in vessels of the tumor stroma.. These findings provide evidence that Sema4D/Plexin-B1-mediated NF-κB activation and IL-8 production is critical in the generation a pro-angiogenic phenotype in endothelial cells and suggests a new therapeutic target for the anti-angiogenic treatment of some cancers.

    Topics: Animals; Antigens, CD; Apoptosis; Capillaries; Cell Line, Tumor; Cell Movement; Cell Transformation, Neoplastic; Endothelial Cells; Gene Expression Regulation, Neoplastic; Human Umbilical Vein Endothelial Cells; Humans; Interleukin-8; Mice; Neovascularization, Pathologic; Nerve Tissue Proteins; Proto-Oncogene Proteins c-akt; Receptors, Cell Surface; rhoA GTP-Binding Protein; Semaphorins; Signal Transduction; Transcription Factor RelA

2011
Oct4-related cytokine effects regulate tumorigenic properties of colorectal cancer cells.
    Biochemical and biophysical research communications, 2011, Nov-18, Volume: 415, Issue:2

    Oct4, a member of the POU-domain transcription factor family, has been implicated in the cancer stem cell (CSC)-like properties of various cancers. However, the precise role of Oct4 in colorectal CSC initiation remains uncertain. Numerous studies have demonstrated a strong link between inflammation and tumorigenesis in colorectal cancers. In this study, we demonstrated that Oct4 overexpression enhances CSC-like properties of colorectal cancer cells (CRCs), including sphere formation, cell colony formation, cell migration, invasiveness, and drug resistance. In addition, putative CSC markers, stemness genes, drug-resistant genes, as well as interleukin (IL)-8 and IL-32 were upregulated. Microarray-based bioinformatics of CRCs showed higher expression levels of embryonic stem cell-specific genes in cells that overexpressed Oct4. Neutralization of either IL-8 or IL-32 with specific antibodies partially blocked the tumorigenic effects induced by either Oct4 overexpression or by the addition of conditioned media from Oct4-overexpressing CRCs. In addition, the presence of Oct4-overexpressing CRCs enhanced the tumorigenic potential of parental CRCs in vivo. In summary, these data suggest that IL-8 and IL-32 play a role in regulating the CSC-like properties that promote tumorigenesis of CRCs in both autocrine and paracrine manners.

    Topics: Autocrine Communication; Cell Line, Tumor; Cell Movement; Cell Transformation, Neoplastic; Colorectal Neoplasms; Culture Media, Conditioned; Drug Resistance, Neoplasm; Embryonic Stem Cells; Gene Expression Regulation, Neoplastic; Humans; Interleukin-8; Interleukins; Neoplastic Stem Cells; Octamer Transcription Factor-3

2011
Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe.
    Oncogene, 2008, Jul-31, Volume: 27, Issue:33

    RNA-binding proteins play a key role in post-transcriptional regulation of mRNA stability and translation. We have identified that RBM3, a translation regulatory protein, is significantly upregulated in human tumors, including a stage-dependent increase in colorectal tumors. Forced RBM3 overexpression in NIH3T3 mouse fibroblasts and SW480 human colon epithelial cells increases cell proliferation and development of compact multicellular spheroids in soft agar suggesting the ability to induce anchorage-independent growth. In contrast, downregulating RBM3 in HCT116 colon cancer cells with specific siRNA decreases cell growth in culture, which was partially overcome when treated with prostaglandin E(2), a product of cyclooxygenase (COX)-2 enzyme activity. Knockdown also resulted in the growth arrest of tumor xenografts. We have also identified that RBM3 knockdown increases caspase-mediated apoptosis coupled with nuclear cyclin B1, and phosphorylated Cdc25c, Chk1 and Chk2 kinases, implying that under conditions of RBM3 downregulation, cells undergo mitotic catastrophe. RBM3 enhances COX-2, IL-8 and VEGF mRNA stability and translation. Conversely, RBM3 knockdown results in loss in the translation of these transcripts. These data demonstrate that the RNA stabilizing and translation regulatory protein RBM3 is a novel proto-oncogene that induces transformation when overexpressed and is essential for cells to progress through mitosis.

    Topics: Animals; Cell Cycle Proteins; Cell Transformation, Neoplastic; Colonic Neoplasms; Cyclooxygenase 2; Dinoprostone; Female; Fibroblasts; HeLa Cells; Humans; Interleukin-8; Mice; Mice, Nude; Mitosis; Neoplasm Transplantation; NIH 3T3 Cells; Protein Biosynthesis; Proto-Oncogene Mas; Proto-Oncogene Proteins; RNA Stability; RNA-Binding Proteins; RNA, Messenger; RNA, Neoplasm; Spheroids, Cellular; Vascular Endothelial Growth Factor A

2008
LZAP, a putative tumor suppressor, selectively inhibits NF-kappaB.
    Cancer cell, 2007, Volume: 12, Issue:3

    LZAP has been reported to inhibit cellular proliferation and clonogenic growth. Here, we report that decreased LZAP expression promoted cellular transformation, xenograft tumor growth, and xenograft tumor vascularity. Loss of LZAP also increased cellular invasion, and MMP-9 expression dependent on NF-kappaB. LZAP directly bound to RelA, impaired serine 536 phosphorylation of RelA, increased HDAC association with RelA, inhibited basal and stimulated NF-kappaB transcriptional activity, and was found at the promoter of selective NF-kappaB-responsive genes. LZAP protein levels were markedly decreased in 32% of primary HNSCCs (n = 28) and decreased LZAP levels in primary HNSCC correlated with increased expression of the NF-kappaB-regulated genes IL-8 and IkappaBalpha. In aggregate, these data support a role of LZAP in NF-kappaB regulation and tumor suppression.

    Topics: Animals; Apoptosis; Carcinoma, Squamous Cell; Cell Cycle Proteins; Cell Transformation, Neoplastic; Gene Expression Regulation; Head and Neck Neoplasms; HeLa Cells; Histone Deacetylases; Humans; I-kappa B Proteins; Interleukin-8; Intracellular Signaling Peptides and Proteins; Matrix Metalloproteinase 9; Mice; Mice, Nude; Neoplasm Invasiveness; Nerve Tissue Proteins; NF-kappa B; Transcription Factor RelA; Transplantation, Heterologous; Tumor Necrosis Factor-alpha; Tumor Suppressor Proteins

2007
Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells.
    Molecular cancer, 2005, Jan-13, Volume: 4, Issue:1

    Pituitary tumor transforming gene1 (PTTG1) is a novel oncogene that is expressed in most tumors. It encodes a protein that is primarily involved in the regulation of sister chromatid separation during cell division. The oncogenic potential of PTTG1 has been well characterized in the mouse, particularly mouse fibroblast (NIH3T3) cells, in which it induces cell proliferation, promotes tumor formation and angiogenesis. Human tumorigenesis is a complex and a multistep process often requiring concordant expression of a number of genes. Also due to differences between rodent and human cell biology it is difficult to extrapolate results from mouse models to humans. To determine if PTTG1 functions similarly as an oncogene in humans, we have characterized its effects on human embryonic kidney (HEK293) cells.. We report that introduction of human PTTG1 into HEK293 cells through transfection with PTTG1 cDNA resulted in increased cell proliferation, anchorage-independent growth in soft agar, and formation of tumors after subcutaneous injection of nu/nu mice. Pathologic analysis revealed that these tumors were poorly differentiated. Both analysis of HEK293 cells transiently transfected with PTTG1 cDNA and analysis of tumors developed on injection of HEK293 cells that had been stably transfected with PTTG1 cDNA indicated significantly higher levels of secretion and expression of bFGF, VEGF and IL-8 compared to HEK293 cells transfected with pcDNA3.1 vector or uninvolved tissues collected from the mice. Mutation of the proline-rich motifs at the C-terminal of PTTG1 abolished its oncogenic properties. Mice injected with this mutated PTTG1 either did not form tumors or formed very small tumors. Taken together our results suggest that PTTG1 is a human oncogene that possesses the ability to promote tumorigenesis in human cells at least in part through the regulation of expression or secretion of bFGF, VEGF and IL-8.. Our results demonstrate that PTTG1 is a potent human oncogene and has the ability to induce cellular transformation of human cells. Overexpression of PTTG1 in HEK293 cells leads to an increase in the secretion and expression of bFGF, VEGF and IL-8. Mutation of C-terminal proline-rich motifs abrogates the oncogenic function of PTTG1. To our knowledge, this is the first study demonstrating the importance of PTTG1 in human tumorigenesis.

    Topics: Animals; Cell Line; Cell Proliferation; Cell Transformation, Neoplastic; Fibroblast Growth Factor 2; Humans; Interleukin-8; Kidney; Mice; Mice, Nude; Neoplasm Proteins; Neoplasms; Securin; Transfection; Vascular Endothelial Growth Factor A

2005
Analysis of the inflammatory network in benign prostate hyperplasia and prostate cancer.
    The Prostate, 2004, Feb-01, Volume: 58, Issue:2

    The complexity of acute and chronic inflammatory processes may either lead to benign prostate hyperplasia (BPH) and/or prostate cancer. Obviously, various tissue cells are activated by chemokines via different chemotaxin receptors which then trigger subsequent processes in angiogenesis, cellular growth, and extravasation as well as neoplasia.. Using the surgically obtained tissue of patients (n = 36) with BPH or prostate carcinoma (PCA), we studied among others the expression of chemokines (Rantes, IL-8), chemotaxin receptors (CXCR-3 and -4, CCR-3, CCR-5), of matrixmetalloproteinases (MMP-2 and 9), of Toll-like (TL) receptors 1, 2, 3, 4, 5, 7, and 9 and of the inducible cyclooxygenase-2 (cox-2) by RT-PCR. Further support for the different properties of tissue from PCA was obtained using two different PCA cell lines (PC3 = androgen resistant cell) or LNCAP cells (androgen sensitive) with emphasis on IL-8, Il-6, and PGE(2) release. Cell lines were stimulated with either the tumor necrosis factor-alpha (TNF-alpha) and lipopolysacharide (LPS) over time. In addition to cytokine release, the quantification of mRNA by lightcycler for cox-2, IL-6, and IL-8 was performed on these cell lines.. Remarkable differences in expression were obtained by RT-PCR when BPH tissue versus PCA was analyzed. Expression of CXCR-1 after incubation with LPS and TNF-alpha showed time-dependent differences for androgen-sensitive LNCAP as compared to androgen-resistant PC-3 cells. TNF-alpha incubation leads to a time-dependent induction of cox-2 expression unlike to activation with LPS. Differences with regard to cox-2, IL-6, and IL-8 expression were seen by quantitative lightcycler analysis. Significant differences were also observed when TL receptors 4, 5, 7, and 9 were analyzed which were significantly expressed in BPH- as compared to PCA-tissue.. Our data clearly demonstrate that various inflammatory and cell biological cascades are involved which either lead to BPH or can be linked to the development of PCA. The exact cell biological mechanisms may provide novel therapeutic options in the treatment of both diseases.

    Topics: Acute Disease; Aged; Aged, 80 and over; Cell Transformation, Neoplastic; Chemotactic Factors; Chronic Disease; Cyclooxygenase 2; Cytokines; Gene Expression Regulation, Neoplastic; Humans; Inflammation; Interleukin-6; Interleukin-8; Isoenzymes; Lipopolysaccharides; Male; Membrane Proteins; Middle Aged; Neovascularization, Pathologic; Prostaglandin-Endoperoxide Synthases; Prostatic Hyperplasia; Prostatic Neoplasms; Receptors, Interleukin-8A; Reverse Transcriptase Polymerase Chain Reaction; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha

2004
Inflammatory mechanisms contributing to pancreatic cancer development.
    Annals of surgery, 2004, Volume: 239, Issue:6

    Pancreatic cancer is the most deadly of all gastrointestinal (GI) malignancies, yet relatively little is known regarding mechanisms of tumor development including the role of inflammation.. Chronic pancreatitis (CP) increases the risk of developing cancer by 10- to 20-fold; mediators of the chronic inflammatory process and the surrounding fibrotic stroma likely support a transformation to malignancy, yet the exact mechanisms remain undefined. The purpose of our present study was to determine potential inflammatory components in epithelial and stromal cells that may contribute to both CP and pancreatic cancers.. Specimens of normal pancreas, CP, and pancreatic cancer were examined using laser-capture microdissection (LCM), gene array, and immunohistochemistry.. Gene array analysis from LCM-dissected tissues demonstrated: (i) increased expression of interleukin-8 (IL-8), an activator of the inflammatory factor nuclear factor-kappaB (NF-kappaB), and (ii) decreased expression of IkappaB (an inhibitor of NF-kappaB) in CP ductal cells compared with normal ducts. Compared with CP, cancers demonstrated: (i) increased expression of tumor related genes including S100A4, cyclin E1, and epidermal growth factor (EGF) receptor, and (ii) expression of matrix metalloproteinase 2, a pro-invasive factor for tumor cells, which was not present in the CP stroma. Increased staining of both the p50 NF-kappaB subunit and IKKalpha kinase (a protein that allows activation of NF-kappaB) was noted in CP and cancers.. Our results demonstrate that similar inflammatory components and downstream effectors are present in CP and pancreatic cancers. Importantly, these findings suggest that a common pathway for pancreatic cancer development may be through a chronic inflammatory process including stroma formation. These findings may lead to novel strategies for pancreatic cancer prophylaxis based on inhibition of inflammatory mediators.

    Topics: Biomarkers, Tumor; Case-Control Studies; Cell Transformation, Neoplastic; Cells, Cultured; Chronic Disease; Culture Techniques; Female; Humans; Immunohistochemistry; Inflammation Mediators; Interleukin-8; Male; NF-kappa B; Pancreatic Ducts; Pancreatic Neoplasms; Pancreatitis; Precancerous Conditions; Prognosis; Sensitivity and Specificity

2004
IkappaBalphaM suppresses angiogenesis and tumorigenesis promoted by a constitutively active mutant EGFR in human glioma cells.
    Neurological research, 2004, Volume: 26, Issue:7

    Human glioma cell lines (G36DeltaEGFR and IN500DeltaEGFR) have been shown to display an enhanced tumorigenic phenotype, when transfected with a constitutively active form of the epidermal growth factor receptor (DeltaEGFR). These cells were transfected with a mutant IkappaBalpha (IkappaBalphaM) that is resistant to phosphorylation and degradation, and hence blocks NF-kappaB activity. Recently, EGFR has been shown to increase the activity of NF-kappaB and to induce angiogenesis. In this report, we asked if IkappaBalphaM gene transfer into human glioma cell lines would inhibit tumorigenicity and angiogenesis in glioma. IkappaBalphaM inhibited in vitro and in vivo expression of vascular endothelial growth factor (VEGF) and interleukin 8 (IL-8). Human glioma xenografts treated with IkappaBalphaM gene transfer exhibited significantly decreased angiogenesis both in an orthotopic and in an ectopic model. The decreased expression of VEGF and IL-8 directly correlated with decreased tumorigenicity, and tumor vascularization. Taken in combination, these results provide strong evidence of IkappaBalphaM's role in regulating glioma angiogenesis even in the presence of constitutive EGFR activation.

    Topics: Animals; Blotting, Northern; Blotting, Western; Cell Line, Tumor; Cell Transformation, Neoplastic; ErbB Receptors; Factor VIII; Gene Expression Regulation, Neoplastic; Glioma; Humans; I-kappa B Proteins; Immunohistochemistry; Interleukin-8; Mice; Mice, Inbred ICR; Mice, Nude; Mutagenesis; Neoplasm Transplantation; Neovascularization, Pathologic; NF-KappaB Inhibitor alpha; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors; Transfection; Vascular Endothelial Growth Factor A

2004
Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines.
    Oral oncology, 2002, Volume: 38, Issue:7

    Interleukin-8 (IL-8) is an important cytokine involved in tumor growth and angiogenesis in a variety of malignancies. Furthermore, matrix metalloptoteinases (MMPs) also play important roles in the invasion and metastasis of carcinomas including oral squamous cell carcinoma (OSCC). We studied whether IL-8 and MMPs participate in tumorigenesis and metastasis of OSCC. First, we investigated the gene and protein expressions of IL-8 and IL-8 receptor (IL-8R), and the effect of IL-8 on proliferation, migration and invasion of OSCC. Second, we thus also investigated the effect of IL-8 on MMP release in OSCC cells. OSCC cell lines NA and HSC-4 constitutively expressed IL-8 mRNA and secreted its protein in vitro. The production of IL-8 was significantly enhanced by the addition of tumor necrosis factor (TNF)-alpha and IL-beta, but not interferon (IFN)-gamma, granulocyte-macrophage colony-stimulating factor (GM-CSF) or IL-2. Flow cytometric analysis revealed the constitutive expression of both receptors of IL-8, IL-8RA and IL-8RB, in OSCC cell lines. The expression of IL-8 receptors in HSC-4 cells was stronger than that in NA cells. The intensity of IL-8RA expression was stronger than that of IL-8RB expression in each cell line. The expression of IL-8 receptors was not altered by the addition of cytokines such as TNF-alpha and IL-1beta. The conditioned medium containing IL-8 from OSCC cell lines induced migration and invasion of OSCC cells, but did not change cell proliferation. The differences in migrational and invasive ability between NA cells and HSC-4 cells were correlated with the expression intensity of IL-8 receptors in each cell line. Neutralizing antibodies to IL-8, IL-8RA and IL-8RB partially inhibited the chemotactic activity induced by conditioned medium. The expression of MMP-2, -7 and -9 was detected in culture supernatants from these OSCC cell lines. The expressions of MMP-7 protein and mRNA were enhanced by the addition of rIL-8, but that of other MMPs was not observed in a similar manner. These results suggest that IL-8 secreted from OSCC may contribute to the invasion of OSCC through the regulation of MMP-7 expression.

    Topics: Carcinoma, Squamous Cell; Cell Transformation, Neoplastic; Cytokines; Flow Cytometry; Humans; Interleukin-8; Metalloendopeptidases; Mouth Neoplasms; Neoplasm Invasiveness; Neoplasm Proteins; Tumor Cells, Cultured

2002
CD40 ligand-CD40 interaction induces chemokines in cervical carcinoma cells in synergism with IFN-gamma.
    Journal of immunology (Baltimore, Md. : 1950), 1999, Apr-01, Volume: 162, Issue:7

    Cellular immunity plays a major role in controlling human papilloma virus infection and development of cervical carcinoma. Mononuclear cell infiltration possibly due to the action of chemokines becomes prominent in the tumor tissue. In fact, the macrophage chemoattractant protein-1, MCP-1, was detected in cervical squamous cell carcinoma in situ, whereas absent in cultured cells. From this, unknown environmental factors were postulated regulating chemokine expression in vivo. In this study, we show high CD40 expression on cervical carcinoma cells and CD40 ligand (CD40L) staining on attracted T cells in tumor tissue, suggesting a paracrine stimulation mechanism via CD40L-CD40 interactions. We therefore investigated chemokine synthesis in nonmalignant and malignant human papilloma virus-positive cell lines after CD40L exposure. Constitutive expression of MCP-1, MCP-3, RANTES, and IFN-gamma-inducible protein-10 was almost undetectable in all cell lines tested. CD40L was able to induce MCP-1 production; however, despite much higher CD40 expression in malignant cells, MCP-1 induction was significantly lower compared with nontumorigenic cells. After sensitization with IFN-gamma, another T cell-derived cytokine showing minimal effects on CD40 expression levels, CD40 ligation led to a more than 20-fold MCP-1 induction in carcinoma cell lines. An even stronger effect was observed for IFN-gamma-inducible protein-10. Our study highlights the synergism of T cell-derived mediators such as CD40L and IFN-gamma for chemokine responses in cervical carcinoma cells, helping to understand the chemokine expression patterns observed in vivo.

    Topics: Carcinoma, Small Cell; CD40 Antigens; CD40 Ligand; Cell Line, Transformed; Cell Transformation, Neoplastic; Chemokine CCL2; Chemokine CXCL10; Chemokines; Chemokines, CXC; Drug Synergism; Female; Humans; Interferon-gamma; Interleukin-8; Keratinocytes; Ligands; Membrane Glycoproteins; NF-kappa B; Papillomaviridae; Papillomavirus Infections; Protein Binding; Tumor Cells, Cultured; Uterine Cervical Neoplasms

1999
Effect of interleukin-8 on production of tumor-associated substances and autocrine growth of human liver and pancreatic cancer cells.
    Cancer immunology, immunotherapy : CII, 1998, Volume: 47, Issue:1

    We have previously reported that human liver cancer cell lines produce interleukin-8 (IL-8) at high levels. Those tumor cells appeared to express two kinds of IL-8 receptor on their surface. In order to analyze the role of IL-8 on the biological characteristics of those tumor cells, we suppressed IL-8 production from human liver (HuH-7 and HuCC-T1) and pancreatic cancer cell lines (HuP-T4) by treatment with IL-8 antisense oligonucleotides. Suppression of IL-8 production resulted not only in inhibition of cell growth, but also in an increase in the concentrations of some tumor-associated substances such as carbohydrate antigen 19-9 (CA19-9) in the medium. These data indicate that IL-8 produced by human liver and pancreatic tumors may act as an autocrine growth factor and may control the production of some tumor-associated substances. Furthermore, surface expression of sialyl-Lewis(a), which is a ligand for ELAM-1 on human umbilical vein endothelial cells (HUVEC), HuCC-T1 and HuP-T4 cells was decreased and the attachment of these tumor cells to HUVEC was inhibited by treatment with IL-8 antisense oligonucleotide. Since the soluble form of CA19-9 (sialyl-Lewis(a)) was shown to inhibit the tumor cell binding to HUVEC, the decrease in release of CA19-9 into the medium and increase in the expression of sialyl-Lewis(a) on the cell surface may suggest that IL-8 production from the tumor cells enhances metastatic potential by augmenting the binding activity of the tumor cells to HUVEC. These data demonstrate that a cytokine produced by tumor cells may function as an autocrine growth factor and affect tumor cell dissemination.

    Topics: Antigens, CD; Cell Adhesion; Cell Division; Cell Transformation, Neoplastic; Cytokines; Endothelium, Vascular; Humans; Interleukin-1; Interleukin-8; Liver Neoplasms; Membrane Proteins; Neoplasm Proteins; Oligonucleotides, Antisense; Pancreatic Neoplasms; Receptors, Chemokine; Receptors, Cytokine; Receptors, Interleukin; Receptors, Interleukin-8A; Receptors, Interleukin-8B; Recombinant Proteins; Tumor Cells, Cultured; Umbilical Veins

1998
The host environment promotes the development of primary and metastatic squamous cell carcinomas that constitutively express proinflammatory cytokines IL-1alpha, IL-6, GM-CSF, and KC.
    Clinical & experimental metastasis, 1998, Volume: 16, Issue:7

    Human and murine squamous cell carcinomas (SCC) have been reported to produce proinflammatory cytokines IL-1alpha, IL-6, GM-CSF, and IL-8 or KC. Production of individual members of the proinflammatory cytokine family has been associated with increased tumor growth or metastasis in a variety of neoplasms. In this study, we determined whether the expression of these cytokines occurs as a result of the events of cellular transformation or culture, or is promoted by interaction of neoplastic cells with factors or cells in the host environment. We compared the expression of proinflammatory cytokines following the spontaneous transformation of murine keratinocytes in vitro, and following the formation of tumors and metastases from these transformed keratinocytes in syngeneic recipients in vivo. Using sensitive ELISA assays, we found that cultures of the in vitro transformed Balb/c SCC line Pam 212 do not produce elevated levels of proinflammatory cytokines IL-1alpha, IL-6, GM-CSF and KC, indicating that transformation or culture alone is insufficient to account for the level of cytokine expression detected in patient and experimental tumors. In contrast, Pam reisolates from primary and metastatic tumors were obtained which constitutively produce markedly elevated levels of cytokines IL-1alpha, IL-6, KC and GM-CSF. The increase in the expression of these cytokines by SCC in vivo occurred independent of T and B lymphocyte-mediated immunity, since increases in expression of the cytokines was observed in lines reisolated from immunodeficient athymic nude and SCID Balb/c congenic mice. The increased expression of cytokines appeared to result from additional events in vivo, rather than due to selection of a pre-existing cytokine-producing subpopulation, since clones of the parental cell line expressed lower cytokine levels than cloned reisolates, and clones of the non-secreting parental cell line that formed tumors in vivo secreted elevated levels of cytokines following reisolation. We conclude that the development of SCC that express proinflammatory cytokines is promoted by tumor-host interaction(s) that are independent of specific T and B cell immunity.

    Topics: Animals; Carcinoma, Squamous Cell; Cell Division; Cell Line; Cell Transformation, Neoplastic; Chemokine CXCL1; Chemokines; Chemokines, CXC; Cloning, Organism; Cytokines; Enzyme-Linked Immunosorbent Assay; Granulocyte-Macrophage Colony-Stimulating Factor; Inflammation Mediators; Interleukin-1; Interleukin-6; Interleukin-8; Mice; Mice, Inbred BALB C

1998
Defective interleukin six expression and responsiveness in human mammary cells transformed by an adeno 5/SV40 hybrid virus.
    British journal of cancer, 1996, Volume: 73, Issue:11

    Mammary epithelial cells (MECs) were isolated and cultured from mammary glands of healthy women undergoing reduction mammoplasty. Normal MECs were infected with the transforming hybrid virus adeno-5/SV40. Two transformed epithelial cell lines, M1 and M2, were obtained, characterised phenotypically and studied for the production of and the response to cytokines and growth regulators. In both cell lines, expression of the SV40 large T antigen was associated with loss of interleukin 6 (IL-6) production and responsiveness as well as with down-regulation of IL-8 and transforming growth factor (TGF)-alpha production. Both M1 and M2 cell lines were capable of forming colonies in semisolid media, but upon injection into severe combined immunodeficient (SCID) mice only M2 cells were tumorigenic. DNA synthesis in M1 cells was partially inhibited by serum or TNF-alpha and weakly stimulated by hydrocortisone (HC) and IL-8. In contrast, M2 cells were totally unresponsive to a variety of growth regulators. Both lines overexpressed the p53 protein at levels about 20-fold higher than those observed in primary MEC cultures, but no mutations of the p53 gene could be detected. The date confirm the view that the expression in human mammary cells of different oncogenes - including the SV40 T antigen - is frequently associated with alterations of cytokine production and responsiveness.

    Topics: Adenocarcinoma; Adenoviruses, Human; Animals; Base Sequence; Breast; Cell Transformation, Neoplastic; DNA Primers; Epithelium; Exons; Female; Gene Expression; Genes, p53; Humans; Interleukin-6; Interleukin-8; Mice; Mice, SCID; Molecular Sequence Data; Mutagenesis; Polymerase Chain Reaction; Simian virus 40; Transforming Growth Factor alpha; Transplantation, Heterologous

1996
Herpesvirus saimiri immortalization of alpha beta and gamma delta human T-lineage cells derived from CD34+ intrathymic precursors in vitro.
    International immunology, 1996, Volume: 8, Issue:11

    Herpesvirus saimiri (HVS), an agent that can infect many human cell types, has been shown to immortalize selectively TCR alpha beta + CD3+ T lymphocytes. Human T cell precursors defined as CD34+CD3-CD4-CD8- were isolated from thymic samples and exposed to HVS in the presence of either IL-2 or IL-7. Cultures lacking the virus were non-viable by day 15. Test cultures, in contrast, showed a sustained proliferative activity lasting > 5 months, allowing the phenotypical and molecular analysis of the cellular progeny. In the presence of IL-7, TCR alpha beta + cells with three different phenotypes (mainly CD4+CD8-, but also CD4+CD8+ and CD4-CD8+) were immortalized, whereas no TCR gamma delta + cells were recovered. Kinetic studies showed that the expansion of immortalized TCR alpha beta + cells was preceded by a gradual loss of CD34+ cells followed by a transient accumulation of two distinct cell subsets: first CD1+CD4+CD3- cells and then CD4+CD8+ thymocytes. This resembles early phenotypic changes occurring during normal intrathymic T cell development. In the presence of IL-2, in contrast, only TCR gamma delta + cells were immortalized (mainly CD4-CD8+, but also CD4-CD8-). The results show that HVS can be used to read the CD3+ cellular outcome of T cell differentiation assays, including gamma delta + CD4-CD8+, gamma delta + CD4-CD8-, alpha beta + CD4+CD8-, alpha beta + CD4-CD8+ and alpha beta + CD4+CD8+ T cells. A clear role for different cytokines (IL-2 for gamma delta + cells, IL-7 for alpha beta + cells) in early T cell commitment was also apparent.

    Topics: Antigens, CD34; Cell Transformation, Neoplastic; Child, Preschool; Hematopoietic Stem Cells; Herpesvirus 2, Saimiriine; Humans; Infant; Interleukin-7; Interleukin-8; Receptors, Antigen, T-Cell, alpha-beta; Receptors, Antigen, T-Cell, gamma-delta; T-Lymphocyte Subsets; Thymus Gland

1996
Enhancement of transformation in vitro of a nontumorigenic rat urothelial cell line by interleukin 6.
    Cancer research, 1995, Oct-15, Volume: 55, Issue:20

    Chronic inflammation of the urinary tract is a significant risk factor for the development of bladder cancer. We have shown that acute and chronic inflammation induced by intravesical instillations of killed Escherichia coli strikingly enhances N-methyl-N-nitrosourea (MNU)-initiated rat bladder carcinogenesis. To test the hypothesis that cytokines released during inflammation may be involved in the enhancement of bladder carcinogenesis, we conducted an in vitro experiment. Using soft agar growth as an index of transformation, we examined the effect of inflammation-associated cytokines on the enhancement of MNU-initiated transformation of MYP3 cells, an anchorage-dependent nontumorigenic rat bladder epithelial cell line. In the first experiment, after 1-h exposure to MNU (50 micrograms/ml), cells (5 x 10(4)) were grown in soft agar in the presence of interleukin (IL)-1 alpha, IL-6, IL-8, or tumor necrosis factor-alpha (10 to 100 ng/ml). Colonies consisting of more than 20 cells were counted 4 weeks later. Among the cytokines tested, IL-6 (100 ng/ml) significantly increased colony counts over those for the untreated controls (P < 0.001). In the second experiment, the cells treated with MNU similarly as in the first experiment were cultured with or without IL-6 (100 ng/ml) for 1 week before the cells (5 x 10(4)) were grown in soft agar in the presence or absence of IL-6. IL-6 pretreatment increased colony counts irrespective of subsequent IL-6 treatment (P < 0.05). Moreover, IL-6-stimulated anchorage-dependent growth of MNU transformants far exceeded that of the parental MYP3. However, among the transformants, there was no parallel relationship in response to IL-6 between anchorage-dependent and -independent growth. Our results suggest that IL-6 may provide a selective growth advantage to MNU-initiated bladder epithelial cells in vitro and that it may be a factor accounting for the marked enhancement of inflammation-associated rat bladder carcinogenesis.

    Topics: Animals; Antigens, CD; Carcinogens; Carcinoma; Cell Division; Cell Transformation, Neoplastic; Cells, Cultured; Epithelial Cells; Gene Expression Regulation, Neoplastic; In Vitro Techniques; Interleukin-1; Interleukin-6; Interleukin-8; Methylnitrosourea; Rats; Receptors, Interleukin; Receptors, Interleukin-6; RNA, Messenger; RNA, Neoplasm; Tumor Necrosis Factor-alpha; Urinary Bladder; Urinary Bladder Neoplasms

1995
Production of cytokines and response to them in normal and transformed human mammary epithelial cells.
    Annals of the New York Academy of Sciences, 1993, Nov-30, Volume: 698

    Topics: Breast; Breast Neoplasms; Cell Line; Cell Line, Transformed; Cell Transformation, Neoplastic; Cytokines; Epithelial Cells; Epithelium; Female; Humans; Interleukin-6; Interleukin-8; Oncogenes; Tumor Necrosis Factor-alpha

1993