interleukin-8 has been researched along with Carcinoma--Papillary* in 9 studies
9 other study(ies) available for interleukin-8 and Carcinoma--Papillary
Article | Year |
---|---|
High Grade T1 Papillary Urothelial Bladder Cancer Shows Prominent Peritumoral Retraction Clefting.
Differentiation of noninvasive from invasive papillary urothelial carcinoma can be challenging due to inability of proper orientation and thermal damage of transurethrally obtained material. The aim of this study was to analyze the presence and extent of peritumoral retractions in pT1 compared to pTa papillary urothelial carcinoma. Since peritumoral retractions may result from altered expression profiles of extracellular matrix proteins, we additionally analyzed the expression of matrix metalloproteinase 2 (MMP-2) and interleukin 8 (IL-8) in these tumors. The study comprised 50 noninvasive (pTa) and 50 invasive (pT1) cases of transurethrally obtained primary papillary urothelial carcinomas. The invasive nature of nests showing peritumoral retractions was confirmed immunohistochemically using antibody against collagen IV. Staining for MMP-2 and IL-8 was evaluated semiquantitatively using immunohistochemical staining index, calculated by multiplying the percentage of positive cells and staining intensity. Peritumoral retractions were found in 32% of pT1 carcinomas but in none of the pTa carcinomas. All tumors showing peritumoral retraction were high grade tumors. There was no statistically significant correlation between the expression of MMP-2 or IL-8 and the presence of peritumoral retractions or stage of the tumor (pTa vs. pT1). A statistically significant but weak correlation was found between MMP-2 and IL-8 expression (χ2-test, p=0,015). There was no statistically significant correlation between the presence of peritumoral retractions or MMP-2 expression and tumor recurrence and progression. Our study shows that, in doubtful cases, when differentiating between pTa and pT1 stages of papillary urothelial carcinoma, the presence of peritumoral retractions could favor the diagnosis of invasive neoplasm. Topics: Adult; Aged; Aged, 80 and over; Biomarkers, Tumor; Carcinoma, Papillary; Female; Follow-Up Studies; Humans; Interleukin-8; Male; Matrix Metalloproteinase 2; Middle Aged; Neoplasm Grading; Neoplasm Invasiveness; Neoplasm Recurrence, Local; Survival Rate; Urinary Bladder Neoplasms | 2018 |
The chemokine receptor CXCR7 is a critical regulator for the tumorigenesis and development of papillary thyroid carcinoma by inducing angiogenesis in vitro and in vivo.
Papillary thyroid carcinoma (PTC) is a well-differentiated neoplasm, but it can transfer early to cervical lymph nodes. Accumulating evidences have confirmed the important roles of CXCR7 in tumor cell proliferation, invasion, metastasis, and angiogenesis. Our previous study demonstrated CXCR7 modulated proliferation, apoptosis, and invasion of PTC cells. In this study, we evaluated the effect of expression of CXCR7 in PTC cells on angiogenesis and whether its expression had an influence on the tumor growth of PTC in vivo. We evaluated the effect of CXCR7 on interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF) secretion, angiogenesis, and tumor growth by ELISA, endothelial tube formation assay, and a xenograft tumor model in nude mice. Immunohistochemistry was used to assess expression of CD34 in tumor of mice. In vitro and in vivo studies in PTC cells suggested that the alteration of CXCR7 expression was correlated with angiogenesis and tumor growth. Moreover, CXCR7 mediated the expression of IL-8 and VEGF, which might be involved in the regulation of tumor angiogenesis. These findings suggest that CXCR7 affects the growth of PTC cells and participates in the tumorigenesis of PTC, probably through regulating angiogenesis by the proangiogenic VEGF or IL-8. Topics: Angiogenesis Inducing Agents; Animals; Antigens, CD34; Apoptosis; Carcinogenesis; Carcinoma; Carcinoma, Papillary; Cell Line, Tumor; Cell Movement; Cell Proliferation; Female; Humans; Interleukin-8; Mice; Mice, Inbred BALB C; Mice, Nude; Neovascularization, Pathologic; Receptors, CXCR; Signal Transduction; Thyroid Cancer, Papillary; Thyroid Neoplasms; Vascular Endothelial Growth Factor A | 2016 |
Metformin reverts the secretion of CXCL8 induced by TNF-α in primary cultures of human thyroid cells: an additional indirect anti-tumor effect of the drug.
Metformin displays both direct and indirect anti-tumor effects. CXCL8 is a crucial downstream mediator of Nuclear-Factor-κB signaling related to the growth and progression of thyroid cancers. Targeting CXCL8 results in prolonged survival and reduced metastatic spread in in-vivo animal models of thyroid tumors.. This study aimed to evaluate whether metformin inhibits the secretion of CXCL8 induced by Tumor-Necrosis-Factor-α (TNF-α) in primary cultures of normal and tumor human thyroid cells as well as in thyroid cancer cell lines.. Normal human thyrocytes, papillary thyroid cancer cells, and thyroid cancer cell lines (TPC-1 and BCPAP) were stimulated with TNF-α (10 ng/mL) alone or in combination with metformin (0.01, 0.1, 1, 2.5, 5, and 10mM). CXCL8 levels were measured in the cell supernatants after 24 hours.. Metformin significantly and dose-dependently inhibited the TNF-α-induced CXCL8 secretion in both normal thyrocytes (ANOVA: F = 42.04; P < .0001) and papillary thyroid cancer cells (ANOVA: F = 21.691; P < .0001) but not in TPC-1 and BCPAP cell lines.. Metformin inhibits the TNF-α-induced CXCL8 secretion in primary cultures of normal thyroid cells and differentiated thyroid cancer cells at least of the most frequent poorly aggressive phenotype. The recruitment of neutrophils within the thyroid gland is a crucial metastasis-promoting factor, and it depends on the amount of CXCL8 produced by both tumor cells and by the more abundant normal thyroid cells exposed to TNF-α. Thus, the here-reported inhibiting effect of metformin on TNF-α-induced CXCL8 secretion could be considered as a further indirect anticancer property of the drug. Topics: Antineoplastic Agents; Carcinoma; Carcinoma, Papillary; Cell Death; Cell Proliferation; Cells, Cultured; Humans; Interleukin-8; Metformin; Primary Cell Culture; Thyroid Cancer, Papillary; Thyroid Gland; Thyroid Neoplasms; Tumor Necrosis Factor-alpha | 2015 |
Tumor-associated macrophages promote the metastatic potential of thyroid papillary cancer by releasing CXCL8.
Tumor-associated macrophages (TAMs) can promote cancer initiation and progression by releasing cytokines. Previously, we have found the density of TAMs correlated with lymph node metastasis in papillary thyroid carcinoma (PTC). However, the mechanisms of how TAMs promote PTC progression remain unclear. In this study, we first showed that the TAMs density in the tumor core was associated with progressive PTC features and TAMs conditioned medium enhanced PTC cells invasion. Cytokine profiling identified a mixed M1/M2 phenotype and CXCL8 was the most consistently abundant cytokine in PTC-derived TAMs. CXCL8 receptors, CXCR1 and CXCR2, were positively stained in PTC cell lines and tissues, though no association with lymph node metastasis or extrathyroid extension. PTC cell invasion was abrogated by anti-CXCL8-neutralizing antibody, whereas addition of exogenous recombinant human CXCL8 enhanced the invasiveness. More importantly, CXCL8 promoted PTC metastasis in vivo. No difference was found for TAMs-derived CXCL8 expression in patients with and without lymph node metastasis or extrathyroid extension. These findings indicated that TAMs may facilitate PTC cell metastasis through CXCL8 and its paracrine interaction with CXCR1/2. Topics: Animals; Carcinoma, Papillary; Cell Movement; Cell Proliferation; Cytokines; Female; Fluorescent Antibody Technique; Humans; Immunoenzyme Techniques; Interleukin-8; Lymphatic Metastasis; Macrophages; Male; Mice; Mice, Inbred NOD; Mice, SCID; Middle Aged; Neoplasm Staging; Prognosis; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Survival Rate; Thyroid Gland; Thyroid Neoplasms; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2014 |
Expression of pigment epithelium-derived factor in bladder tumour is correlated with interleukin-8 yet not with interleukin-1α.
Pigment epithelium-derived factor (PEDF) is an antiangiogenic factor which is effective in tumour inhibition in a variety of tumours and has not yet been studied in bladder tumour before. In this study the expression of PEDF, interleukin-1α (IL-1α) and -8 (IL-8) in bladder tumours was investigated. Immunohistochemistry was performed on 64 bladder tumour and 23 normal uroepithelium samples. Expression change of the factors was compared with clinicopathological parameters. Correlations between PEDF, IL-1α and IL-8 were analyzed. None of the factors was in relation to gender, tumour occurrence, and size or onset pattern. PEDF (P=0.014) and IL-1α (P=0.049) expression was down-regulated with grade progression. PEDF expression was lower in normal uroepithelium than in papillary urothelial neoplasm of low malignant potential (PUNLMP) (P=0.000) and carcinoma (P=0.009) whilst IL-1α (P=0.000 and P=0.000 respectively) and IL-8 (P=0.000 and P=0.023 respectively) expression was higher in the same grouping. PEDF expression had a negative correlation with IL-8 in PUNLMP (P=0.049, r=-0.578) as well as in tumour grouping (P=0.033, r=-0.276). Deranged expressional change of PEDF, IL-1α and IL-8 could be in relation to loss of differentiation from normal uroepithelium to papillary lesion and eventually to carcinoma. Topics: Adult; Aged; Aged, 80 and over; Carcinoma, Papillary; Eye Proteins; Female; Humans; Interleukin-1alpha; Interleukin-8; Male; Middle Aged; Nerve Growth Factors; RNA, Messenger; Serpins; Urinary Bladder Neoplasms; Young Adult | 2011 |
The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies.
The recent concept that oncogenes responsible for thyroid neoplastic transformation are able to elicit an inflammatory protumourigenic microenvironment raises interest in further studies on papillary thyroid cancer (PTC) associated with thyroid autoimmunity.. The clinical and molecular features, and the expression of inflammation-related genes, were investigated in a large series of PTCs with and without associated thyroiditis (groups A, n = 128 and B, n = 215).. The two groups did not show significant differences in clinical and prognostic features, whereas they harboured a significantly different genetic background (P = 0.001), with RET/PTC1 being more represented in PTCs associated with autoimmunity, and BRAF(V600E) in patients with PTC alone. A RET/PTC rearrangement was also found in 41% of non-neoplastic thyroiditis tissues, contralateral to tumours harbouring either RET/PTC or BRAF mutations. The expression of genes encoding CCL20, CXCL8 and l-selectin was significantly higher in PTC specimens (either with RET/PTC, BRAF(V600E) or unknown genetic lesion) compared with normal thyroid samples. On the contrary, thyroiditis showed l-selectin expression levels even higher than PTCs, but CCL20 and CXCL8 levels comparable with normal tissues.. The present data extend the knowledge about the tight relationships among oncogenes, thyroiditis and thyroid cancer. A different genetic background among PTCs with and without associated autoimmunity has been firstly demonstrated. The strong association between RET/PTC1 and thyroiditis points to a critical role of this oncoprotein in the modulation of the autoimmune response. Moreover, preliminary expression studies, indicating enhanced expression of inflammatory molecules in PTCs, suggest a proinflammatory, nonautoimmune relationship between thyroiditis and thyroid cancer. Topics: Adolescent; Adult; Aged; Autoimmunity; Carcinoma, Papillary; Chemokine CCL20; Female; Genetic Association Studies; Humans; Inflammation; Interleukin-8; Male; Middle Aged; Mutation; Oncogene Proteins, Fusion; Protein-Tyrosine Kinases; Proto-Oncogene Proteins B-raf; Reverse Transcriptase Polymerase Chain Reaction; Thyroid Neoplasms; Thyroiditis; Young Adult | 2010 |
Defective antitumor function of monocyte-derived macrophages from epithelial ovarian cancer patients.
Monocytes/macrophages (MO/MA) are an important but heterogeneous population of immune inflammatory cells that have diverse effector functions. We examined and compared these differences in peripheral blood and ascites of epithelial ovarian cancer patients with peripheral blood of normal donors.. Comparisons were made of cell surface subsets, cytokine production, and FcR-dependent cytotoxicity of CD14+ MO/MA and the CD14brightCD16-HLA-DR+ MO/MA subset in normal donor peripheral blood and peripheral blood and ascites from epithelial ovarian cancer patients. Studies were done on monocyte-derived macrophages cultured with macrophage colony-stimulating factor and activated with lipopolysaccharide or a combination of lipopolysaccharide plus recombinant IFN-gamma.. We determined that MO/MA or its subset from epithelial ovarian cancer patients had altered morphology and significantly less antibody-dependent cell-mediated cytotoxicity and phagocytic activity than did MO/MA from normal donors. Our findings also showed that monocyte-derived macrophages from both epithelial ovarian cancer patients and normal donors produce macrophage colony-stimulating factor-stimulated cytokines, including interleukin-8, tumor necrosis factor-alpha, and interleukin-6.. These findings highlight for the first time the defective antibody-dependent cell-mediated cytotoxicity and phagocyte functions of epithelial ovarian cancer-associated MO/MA, which could have implications for immunobiotherapeutic strategies. Topics: Adenocarcinoma, Clear Cell; Antibody-Dependent Cell Cytotoxicity; Ascitic Fluid; Carcinoma, Endometrioid; Carcinoma, Papillary; Female; HLA-DR Antigens; Humans; Interleukin-6; Interleukin-8; Lipopolysaccharide Receptors; Macrophages; Neoplasms, Glandular and Epithelial; Ovarian Neoplasms; Peritoneal Neoplasms; Phagocytosis; Receptors, IgG; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 2006 |
Expression, regulation and function of autotaxin in thyroid carcinomas.
Autotaxin (ATX/NPP2) is a tumor cell motility-stimulating factor that displays both a nucleotide pyrophosphatase/phosphodiesterase activity and a recently described lysophospholipase D (lysoPLD) activity. The precise function of ATX in tumor cells and the role of ATX in thyroid carcinoma remains unclear. We have quantified ATX mRNA expression in thyroid carcinoma cell lines and in tissues of patients with thyroid carcinomas. ATX gene activity was significantly higher in undifferentiated anaplastic thyroid carcinoma cell lines (UTC) and tumor tissues as compared to follicular thyroid carcinoma (FTC) cell lines, FTC tissues or goiter tissues that were used as a control. In the thyroid carcinoma cell line 1736, EGF and bFGF stimulated ATX mRNA expression, whereas the cytokines IL-4, IL-1beta and TGF-beta reduced ATX transcriptional levels. FTC-133 cells, stably transfected with an expression vector for ATX, showed a higher lysoPLD activity, a higher proliferation rate and an increased migratory behavior. In addition, ATX also displayed a paracrine stimulatory effect on the motility of different thyroid carcinoma cell lines. Overexpression of ATX in the stably transfected FTC-133 resulted in down-regulation of CD54/ intercellular adhesion molecule-1 (ICAM-1) gene expression and augmented gene activity of the pro-angiogenic chemokine IL-8. We conclude that ATX may be regarded as a new tissue marker for undifferentiated human thyroid carcinoma cells. ATX increases the proliferation and migration of thyroid carcinoma cell lines and may also affect the angiogenic potential of thyroid carcinoma cells. Further studies are needed to provide insight into the role of ATX in the normal and neoplastic thyroid gland. Topics: Adenocarcinoma, Follicular; Adult; Aged; Aged, 80 and over; Carcinoma; Carcinoma, Papillary; Epidermal Growth Factor; Female; Fibroblast Growth Factor 2; Gene Expression Regulation, Neoplastic; Glucose-6-Phosphate Isomerase; Glycoproteins; Goiter; Humans; Intercellular Adhesion Molecule-1; Interleukin-1; Interleukin-4; Interleukin-8; Male; Middle Aged; Multienzyme Complexes; Phosphodiesterase I; Phosphoric Diester Hydrolases; Pyrophosphatases; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Thyroid Neoplasms; Transfection; Transforming Growth Factor beta; Tumor Cells, Cultured | 2004 |
Establishment of a non-tumorigenic papillary thyroid cell line (FB-2) carrying the RET/PTC1 rearrangement.
A novel human thyroid papillary carcinoma cell line (FB-2) has been established and characterized. FB-2 cells harbor the RET/PTC1 chimeric oncogene in which the RET kinase domain is fused to the H4 gene. FB-2 cells neither formed colonies in semisolid media nor induced tumors after heterotransplant into severe combined immunodeficient mice. However, HMGI(Y), HMGI-C and c-myc genes, which are associated to thyroid cell transformation, were abundantly expressed in FB-2 cells but not in normal thyroid cells. FB-2 cells only partially retained the differentiated thyroid phenotype. In fact, the PAX-8 gene, which codes for a transcriptional factor required for thyroid cell differentiation, was expressed, while thyroglobulin, TSH-receptor and thyroperoxidase genes were not. Moreover, FB-2 cells produced high levels of interleukin (IL)-6 and IL-8. Topics: Adult; Animals; Carcinoma, Papillary; Cell Differentiation; Cell Division; Cell Movement; DNA-Binding Proteins; Female; HMGA1a Protein; HMGA2 Protein; Humans; Interleukin-6; Interleukin-8; Karyotyping; Mice; Mice, SCID; Neoplasm Transplantation; Neoplasms, Experimental; Nuclear Proteins; Oncogene Proteins, Fusion; Paired Box Transcription Factors; PAX8 Transcription Factor; Phenotype; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-myc; RNA, Messenger; Thyroid Gland; Thyroid Neoplasms; Trans-Activators; Tumor Cells, Cultured | 2002 |