int-777 and Diabetic-Nephropathies

int-777 has been researched along with Diabetic-Nephropathies* in 3 studies

Other Studies

3 other study(ies) available for int-777 and Diabetic-Nephropathies

ArticleYear
FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity.
    Journal of the American Society of Nephrology : JASN, 2018, Volume: 29, Issue:1

    Bile acids are ligands for the nuclear hormone receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5. We have shown that FXR and TGR5 have renoprotective roles in diabetes- and obesity-related kidney disease. Here, we determined whether these effects are mediated through differential or synergistic signaling pathways. We administered the FXR/TGR5 dual agonist INT-767 to DBA/2J mice with streptozotocin-induced diabetes, db/db mice with type 2 diabetes, and C57BL/6J mice with high-fat diet-induced obesity. We also examined the individual effects of the selective FXR agonist obeticholic acid (OCA) and the TGR5 agonist INT-777 in diabetic mice. The FXR agonist OCA and the TGR5 agonist INT-777 modulated distinct renal signaling pathways involved in the pathogenesis and treatment of diabetic nephropathy. Treatment of diabetic DBA/2J and db/db mice with the dual FXR/TGR5 agonist INT-767 improved proteinuria and prevented podocyte injury, mesangial expansion, and tubulointerstitial fibrosis. INT-767 exerted coordinated effects on multiple pathways, including stimulation of a signaling cascade involving AMP-activated protein kinase, sirtuin 1, PGC-1

    Topics: Albuminuria; Animals; Bile Acids and Salts; Chenodeoxycholic Acid; Cholesterol; Cholic Acids; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Disease Progression; Endoplasmic Reticulum Stress; Fibrosis; Glomerular Mesangium; Humans; Kidney Tubules; Male; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Mitochondria; Obesity; Oxidative Stress; Podocytes; Receptors, Cytoplasmic and Nuclear; Receptors, G-Protein-Coupled; RNA, Messenger; Signal Transduction; Triglycerides

2018
G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes.
    Journal of the American Society of Nephrology : JASN, 2016, Volume: 27, Issue:5

    Obesity and diabetes mellitus are the leading causes of renal disease. In this study, we determined the regulation and role of the G protein-coupled bile acid receptor TGR5, previously shown to be regulated by high glucose and/or fatty acids, in obesity-related glomerulopathy (ORG) and diabetic nephropathy (DN). Treatment of diabetic db/db mice with the selective TGR5 agonist INT-777 decreased proteinuria, podocyte injury, mesangial expansion, fibrosis, and CD68 macrophage infiltration in the kidney. INT-777 also induced renal expression of master regulators of mitochondrial biogenesis, inhibitors of oxidative stress, and inducers of fatty acid β-oxidation, including sirtuin 1 (SIRT1), sirtuin 3 (SIRT3), and Nrf-1. Increased activity of SIRT3 was evidenced by normalization of the increased acetylation of mitochondrial superoxide dismutase 2 (SOD2) and isocitrate dehydrogenase 2 (IDH2) observed in untreated db/db mice. Accordingly, INT-777 decreased mitochondrial H2O2 generation and increased the activity of SOD2, which associated with decreased urinary levels of H2O2 and thiobarbituric acid reactive substances. Furthermore, INT-777 decreased renal lipid accumulation. INT-777 also prevented kidney disease in mice with diet-induced obesity. In human podocytes cultured with high glucose, INT-777 induced mitochondrial biogenesis, decreased oxidative stress, and increased fatty acid β-oxidation. Compared with normal kidney biopsy specimens, kidney specimens from patients with established ORG or DN expressed significantly less TGR5 mRNA, and levels inversely correlated with disease progression. Our results indicate that TGR5 activation induces mitochondrial biogenesis and prevents renal oxidative stress and lipid accumulation, establishing a role for TGR5 in inhibiting kidney disease in obesity and diabetes.

    Topics: Animals; Bile Acids and Salts; Cholic Acids; Diabetic Nephropathies; Humans; Hydrogen Peroxide; Kidney Diseases; Male; Mice; Obesity; Oxidative Stress; Podocytes; Receptors, G-Protein-Coupled; Signal Transduction; Superoxide Dismutase

2016
TGR5 activation suppressed S1P/S1P2 signaling and resisted high glucose-induced fibrosis in glomerular mesangial cells.
    Pharmacological research, 2016, Volume: 111

    Glucose and lipid metabolism disorders and chronic inflammation in the kidney tissues are largely responsible for causative pathological mechanism of renal fibrosis in diabetic nephropathy (DN). As our previous findings confirmed that, sphingosine 1-phosphate (S1P)/sphingosine 1-phosphate receptor 2 (S1P2) signaling activation promoted renal fibrosis in diabetes. Numerous studies have demonstrated that the G protein-coupled bile acid receptor TGR5 exhibits effective regulation of glucose and lipid metabolism and anti-inflammatory effects. TGR5 is highly expressed in kidney tissues, whether it attenuates the inflammation and renal fibrosis by inhibiting the S1P/S1P2 signaling pathway would be a new insight into the molecular mechanism of DN. Here we investigated the effects of TGR5 on diabetic renal fibrosis, and the underlying mechanism would be also discussed. We found that TGR5 activation significantly decreased the expression of intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-beta 1 (TGF-β1), as well as fibronectin (FN) induced by high glucose in glomerular mesangial cells (GMCs), which were pathological features of DN. S1P2 overexpression induced by high glucose was diminished after activation of TGR5, and AP-1 activity, including the phosphorylation of c-Jun/c-Fos and AP-1 transcription activity, was attenuated. As a G protein-coupled receptor, S1P2 interacted with TGR5 in GMCs. Furthermore, INT-777 lowered S1P2 expression and promoted S1P2 internalization. Taken together, TGR5 activation reduced ICAM-1, TGF-β1 and FN expressions induced by high glucose in GMCs, the mechanism might be through suppressing S1P/S1P2 signaling, thus ameliorating diabetic nephropathy.

    Topics: Animals; Cells, Cultured; Cholic Acids; Diabetic Nephropathies; Disease Models, Animal; Fibronectins; Fibrosis; Glucose; Intercellular Adhesion Molecule-1; Lysophospholipids; Mesangial Cells; Mice, Inbred C57BL; Phosphorylation; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Receptors, Lysosphingolipid; RNA Interference; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Transcription Factor AP-1; Transfection; Transforming Growth Factor beta1

2016