inosinic-acid has been researched along with Neoplasms* in 6 studies
3 review(s) available for inosinic-acid and Neoplasms
Article | Year |
---|---|
Role of purine metabolism in regulation of signal transduction in human carcinoma cells.
Topics: Antimetabolites, Antineoplastic; Deoxyguanine Nucleotides; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Inosine Monophosphate; Leukemia; Neoplasms; Purines; Ribavirin; Signal Transduction | 1998 |
Accumulation of purine catabolites in solid tumors exposed to therapeutic hyperthermia.
Intensified adenosine triphosphate (ATP) degradation following therapeutic hyperthermia is often observed in solid tumors. As a result, accumulation of purine catabolites can be expected together with formation of protons at several stages during degradation to the final product, uric acid. Proton formation in turn can contribute to the development of heat-induced acidosis. Furthermore, oxidation of hypoxanthine and xanthine may result in generation of reactive oxygen species, which may lead to DNA damage, lipid peroxidation and protein denaturation, thus also contributing to heat-induced cytotoxicity. In hyperthermia experiments a tumor-size-dependent, significant increase in the levels of the following catabolites has been demonstrated: [symbol: see text] [IMP + GMP] (sum of guanosine and inosine monophosphate levels), inosine, hypoxanthine, xanthine and uric acid, along with a drop in ATP and guanosine triphosphate (GTP) levels. These data suggest that formation of reactive oxygen species and protons during purine degradation may indeed play a significant role in the antitumor effect of hyperthermia. Topics: Adenosine Triphosphate; Animals; Guanosine Monophosphate; Guanosine Triphosphate; Humans; Hyperthermia, Induced; Inosine Monophosphate; Models, Biological; Neoplasms; Neoplasms, Experimental; Purines; Ribonucleotides | 1996 |
Biochemical strategy of cancer cells and the design of chemotherapy: G. H. A. Clowes Memorial Lecture.
Topics: Adenosine Monophosphate; Animals; Antibiotics, Antineoplastic; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Transformation, Neoplastic; Deoxyribonucleotides; Gene Expression Regulation; Gluconeogenesis; Guanosine Monophosphate; Humans; Inosine Monophosphate; Isoxazoles; Kidney Neoplasms; Liver Neoplasms; Liver Regeneration; Models, Biological; Neoplasms; Purines; Pyrimidines; Ribonucleotides | 1983 |
3 other study(ies) available for inosinic-acid and Neoplasms
Article | Year |
---|---|
Synthesis, structure, and antiproliferative activity of selenophenfurin, an inosine 5'-monophosphate dehydrogenase inhibitor analogue of selenazofurin.
The synthesis and biological activity of selenophenfurin (5-beta-D-ribofuranosylselenophene-3-carboxamide, 1), the selenophene analogue of selenazofurin, are described. Glycosylation of ethyl selenophene-3-carboxylate (6) under stannic chloride-catalyzed conditions gave 2- and 5-glycosylated regioisomers, as a mixture of alpha- and beta-anomers, and the beta-2,5-diglycosylated derivative. Deprotected ethyl 5-beta-D-ribofuranosylselenophene-3-carboxylate (12 beta) was converted into selenophenfurin by ammonolysis. The structure of 12 beta was determined by 1H- and 13C-NMR, crystallographic, and computational studies. Selenophenfurin proved to be antiproliferative against a number of leukemia, lymphoma, and solid tumor cell lines at concentrations similar to those of selenazofurin but was more potent than the thiophene and thiazole analogues thiophenfurin and tiazofurin. Incubation of K562 cells with selenophenfurin resulted in inhibition of IMP dehydrogenase (IMPDH) (76%) and an increase in IMP pools (14.5-fold) with a concurrent decrease in GTP levels (58%). The results obtained confirm the hypothesis that the presence of heteroatoms such as S or Se in the heterocycle in position 2 with respect to the glycosidic bond is essential for both cytotoxicity and IMP dehydrogenase inhibitory activity in this type of C-nucleosides. Topics: Animals; Antineoplastic Agents; Cell Division; Computer Simulation; Crystallography, X-Ray; Enzyme Inhibitors; Guanosine Triphosphate; Humans; IMP Dehydrogenase; Inosine Monophosphate; Leukemia; Lymphoma; Magnetic Resonance Spectroscopy; Mice; Models, Molecular; Molecular Structure; Neoplasms; Organoselenium Compounds; Ribavirin; Ribonucleosides; Tumor Cells, Cultured | 1997 |
Furanfurin and thiophenfurin: two novel tiazofurin analogues. Synthesis, structure, antitumor activity, and interactions with inosine monophosphate dehydrogenase.
The syntheses of furan and thiophene analogues of tiazofurin (furanfurin and thiophenfurin, respectively) are described. Direct stannic chloride-catalyzed C-glycosylation of ethyl 3-furan-carboxylate (6) or ethyl 3-thiophencarboxylate (18) with 1,2,3,5-tetra-O-acetyl-D-ribofuranose gave 2- and 5-glycosylated regioisomers, as a mixture of alpha- and beta-anomers, and the beta-2,5-diglycosylated derivatives. Deprotection of ethyl 5-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)furan-3-carboxylate (9 beta) and ethyl 5-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)thiophene-3-carboxylate (20 beta) with sodium ethoxide afforded ethyl 5-beta-D-ribofuranosylfuran-3-carboxylate (12 beta) and ethyl 5-beta-D-ribofuranosylthiophene-3-carboxylate (23 beta) which were converted into 5-beta-D-ribofuranosylfuran-3-carboxamide (furanfurin, 4) and 5-beta-D-ribofuranosylthiophene-3-carboxamide (thiophenfurin, 5) by reaction with ammonium hydroxide. The anomeric configuration and the site of glycosylation were established by 1H-NMR and proton-proton nuclear Overhauser effect difference spectroscopy. The structure of compound 23 beta was confirmed by X-ray crystallography. Thiophenfurin was found to be cytotoxic in vitro toward murine lymphocytic leukemia P388 and L1210, human myelogenous leukemia K562, human promyelocytic leukemia HL-60, human colon adenocarcinoma LoVo, and B16 melanoma at concentrations similar to that of tiazofurin. In the same test furanfurin proved to be inactive. Thiophenfurin was found active in vivo in BD2F1 mice inoculated with L1210 cells with a % T/C of 168 at 25 mg/kg. K562 cells incubation with thiophenfurin resulted in inhibition of inosine monophosphate (IMP) dehydrogenase (63%) and an increase in IMP pools (6-fold) with a concurrent decrease in GTP levels (42%). Incubation of adenosine-labeled K562 cells with tiazofurin, thiophenfurin, and furanfurin resulted in a 2-fold higher NAD analogue formulation by thiophenfurin than by tiazofurin. Furanfurin was converted to the NAD analogue with only 10% efficiency. The results obtained support the hypothesis that the presence of S in the heterocycle in position 2 with respect to the glycosidic bond is essential for the cytotoxicity and IMP dehydrogenase activity of tiazofurin, while the N atom is not. Topics: Animals; Antineoplastic Agents; Crystallography, X-Ray; Humans; IMP Dehydrogenase; Inosine Monophosphate; Magnetic Resonance Spectroscopy; Mice; NAD; Neoplasms; Ribavirin; Ribonucleosides; Ribonucleotides; Tumor Cells, Cultured | 1995 |
Synthesis and biological properties of purine and pyrimidine 5'-deoxy-5'-(dihydroxyphosphinyl)-beta-D-ribofuranosyl analogues of AMP, GMP, IMP, and CMP.
Methyl 2,3-O-isopropylidene-D-ribofuranoside (1) was converted to 1-O-acetyl-5-bromo-5-deoxy-2,3-di-O-benzoyl-D-ribofuranose (6) in five steps with good yield. The Arbuzov condensation of compound 6 with triethyl phosphite resulted in the synthesis of 1-O-acetyl-2,3-di-O-benzoyl-5-deoxy-5-(diethoxyphosphinyl)-D-ribofuranos e (7). Compound 7 was used for direct glycosylation of both purine and pyrimidine bases. The glycosylation was accomplished with the dry silylated heterocyclic base in the presence of trimethylsilyl triflate. Deblocking of the glycosylation products gave exclusively the beta anomer of the 5'-phosphonate analogues of 9-[5'-deoxy-5'-(dihydroxyphosphinyl)-beta-D-ribofuranosyl]adenine (13), 9-[5'-deoxy-5'-(dihydroxyphosphinyl)-beta-D-ribofuranosyl]guanosin e (16), 9-[5'-deoxy-5'-(dihydroxyphosphinyl)-beta-D-ribofuranosyl]hypoxant hine (17), and 9-[5'-deoxy-5'-(dihydroxyphosphinyl)-beta-D-ribofuranosyl]cytosine (15), described here for the first time. The target compounds as well as their intermediates showed no in vitro antiviral or antitumor activity, although phosphorylation of 15 and 16 to di- and triphosphate analogues was demonstrated with use of isolated cellular enzymes. Topics: Adenosine Monophosphate; Animals; Chemical Phenomena; Chemistry; Colonic Neoplasms; Cytidine Monophosphate; Cytosine Nucleotides; Guanine Nucleotides; Guanosine Monophosphate; Humans; Inosine Monophosphate; Inosine Nucleotides; Leukemia; Leukemia L1210; Magnetic Resonance Spectroscopy; Mice; Molecular Structure; Neoplasms; Phosphorylation; Spectrophotometry, Ultraviolet; Structure-Activity Relationship; Tumor Cells, Cultured; Viruses | 1989 |