inosinic-acid and Heart-Arrest

inosinic-acid has been researched along with Heart-Arrest* in 1 studies

Other Studies

1 other study(ies) available for inosinic-acid and Heart-Arrest

ArticleYear
Effect of standard-dose versus high-dose epinephrine on myocardial high-energy phosphates during ventricular fibrillation and closed-chest CPR.
    Annals of emergency medicine, 1993, Volume: 22, Issue:9

    To evaluate the effects of standard-dose versus high-dose epinephrine on myocardial high-energy phosphate metabolism during resuscitation from cardiac arrest.. Prospective, nonrandomized, controlled study using a swine model of cardiac arrest and resuscitation.. After anesthesia, intravascular pressure instrumentation, and ten minutes of ventricular fibrillation arrest, closed-chest CPR was begun. After three minutes of CPR, animals were allocated to receive either 0.02 mg/kg i.v. standard-dose epinephrine (eight) or 0.2 mg/kg i.v. high-dose epinephrine (nine). The animals underwent thoracotomy and rapid-freezing transmural myocardial core biopsy for high-energy phosphate analysis 3.5 minutes after epinephrine administration. High-energy phosphate values were blindly determined using high-pressure liquid chromatography.. Intravascular pressure (mm Hg) and high-energy phosphate (nmol/mg protein) results for standard-dose epinephrine versus high-dose epinephrine are, respectively, coronary perfusion pressure, 15.3 +/- 7.8 versus 23.7 +/- 5.5 (P = .0009); phosphocreatine, 0.4 +/- 0.8 versus 6.2 +/- 4.4 (P = .0003); adenosine triphosphate, 9.8 +/- 4.8 versus 12.7 +/- 5.7 (P = .30); adenosine diphosphate, 5.4 +/- 2.1 versus 6.1 +/- 1.3 (P = .41); and adenylate charge, 0.68 +/- 0.12 versus 0.72 +/- 0.12 (P = .87).. High-dose epinephrine does not deplete myocardial high-energy phosphate when given in this model of prolonged ventricular fibrillation. High-dose epinephrine increases coronary perfusion pressure compared with standard-dose epinephrine. High-dose epinephrine administration repletes phosphocreatine during closed-chest CPR, thereby increasing myocardial energy stores.

    Topics: Adenosine; Adenosine Diphosphate; Adenosine Monophosphate; Adenosine Triphosphate; Animals; Biopsy; Blood Gas Analysis; Cardiopulmonary Resuscitation; Chromatography, High Pressure Liquid; Clinical Protocols; Disease Models, Animal; Drug Evaluation, Preclinical; Epinephrine; Guanosine Triphosphate; Heart Arrest; Hemodynamics; Injections, Intravenous; Inosine; Inosine Monophosphate; Myocardium; Phosphocreatine; Swine; Ventricular Fibrillation

1993