incretins and Reperfusion-Injury

incretins has been researched along with Reperfusion-Injury* in 5 studies

Other Studies

5 other study(ies) available for incretins and Reperfusion-Injury

ArticleYear
The novel GLP-1/GIP dual agonist DA3-CH is more effective than liraglutide in reducing endoplasmic reticulum stress in diabetic rats with cerebral ischemia-reperfusion injury.
    Nutrition, metabolism, and cardiovascular diseases : NMCD, 2021, 01-04, Volume: 31, Issue:1

    Diabetes is one of the most important risk factors and comorbidities of ischemic stroke. Endoplasmic reticulum stress (ERS) is considered to be the major injury mechanism of ischemic stroke with diabetes. Studies have found that incretin can inhibit ERS in ischemia-reperfusion injury of the liver and heart. We aimed to explore the effects of GLP-1/GIP double agonist DA3-CH and GLP-1 single agonist liraglutide on ERS and apoptosis in diabetic rats with cerebral ischemia-reperfusion injury.. 72 Sprague-Dawley (SD) male rats were randomly divided into 4 groups: ① blank group (Sham group, n = 18); model group (Saline group, n = 18); DA3 treatment group (DA3 group, n = 18); liraglutide treatment group (Lir group, n = 18). The Sham group was not given any treatment and was only raised in the same environment as the other groups. The remaining 3 groups used STZ-induced diabetes models. After the successful membrane formation of diabetes, DA3-CH and liraglutide (10 mmol/kg, once-daily for 14 days) were injected intraperitoneally. Thereafter, rats were subjected to middle cerebral artery occlusion followed by 24-h reperfusion. Animals were evaluated for neurologic deficit score, infarct volume, and biomarker analyses of the brain after ischemia. The DA3-CH-treated and liraglutide-treated groups showed significantly reduced scores of neurological dysfunction and cerebral infarction size, and reduced the expression of ERS markers GRP78, CHOP and Caspase-12, and the expression of apoptosis marker bax. Anti-apoptotic markers bcl-2 and neuronal numbers increased significantly.. DA3-CH and liraglutide have obvious neuroprotective effects in a rat model of cerebral ischemia-reperfusion injury with diabetes, which can reduce the infarct size and the neurological deficit score. Their exert neuroprotective effects in a rat model of cerebral ischemia-reperfusion injury with diabetes by inhibiting endoplasmic reticulum stress and thereby reducing apoptosis. DA3 is better than liraglutide.

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Brain; Diabetes Mellitus, Experimental; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Incretins; Infarction, Middle Cerebral Artery; Liraglutide; Neurons; Peptides; Rats, Sprague-Dawley; Receptors, Gastrointestinal Hormone; Reperfusion Injury; Signal Transduction; Streptozocin

2021
Neuroprotection in Rats Following Ischaemia-Reperfusion Injury by GLP-1 Analogues-Liraglutide and Semaglutide.
    Cardiovascular drugs and therapy, 2019, Volume: 33, Issue:6

    A substantial number of ischaemic stroke patients who receive reperfusion therapy in the acute phase do not ever fully recover. This reveals the urgent need to develop new adjunctive neuroprotective treatment strategies alongside reperfusion therapy. Previous experimental studies demonstrated the potential of glucagon-like peptide-1 (GLP-1) to reduce acute ischaemic damage in the brain. Here, we examined the neuroprotective effects of two GLP-1 analogues, liraglutide and semaglutide.. A non-diabetic rat model of acute ischaemic stroke involved 90, 120 or 180 min of middle cerebral artery occlusion (MCAO). Liraglutide or semaglutide was administered either i.v. at the onset of reperfusion or s.c. 5 min before the onset of reperfusion. Infarct size and functional status were evaluated after 24 h or 72 h of reperfusion.. Liraglutide, administered as a bolus at the onset of reperfusion, reduced infarct size by up to 90% and improved neuroscore at 24 h in a dose-dependent manner, following 90-min, but not 120-min or 180-min ischaemia. Semaglutide and liraglutide administered s.c. reduced infarct size by 63% and 48%, respectively, and improved neuroscore at 72 h following 90-min MCAO. Neuroprotection by semaglutide was abolished by GLP1-R antagonist exendin(9-39).. Infarct-limiting and functional neuroprotective effects of liraglutide are dose-dependent. Neuroprotection by semaglutide is at least as strong as by liraglutide and is mediated by GLP-1Rs.

    Topics: Animals; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Glucagon-Like Peptide-1 Receptor; Glucagon-Like Peptides; Incretins; Infarction, Middle Cerebral Artery; Liraglutide; Male; Neuroprotective Agents; Rats, Sprague-Dawley; Reperfusion; Reperfusion Injury; Time Factors

2019
Neuroprotection of rhGLP-1 in diabetic rats with cerebral ischemia/reperfusion injury via regulation of oxidative stress, EAAT2, and apoptosis.
    Drug development research, 2018, Volume: 79, Issue:6

    Preclinical Research & Development The purpose of the present study is to evaluate the neuroprotective effect of recombinant human glucagon-like peptide-1 (rhGLP-1) as well as to explore corresponding mechanisms in diabetic rats with cerebral ischemia/reperfusion injury induced by middle cerebral artery occlusion (MCAO). Diabetes mellitus was induced by intraperitoneal injection of streptozotocin. The rats were pretreated with rhGLP-1 (20 μg/kg intraperitoneally, thrice a day) for 14 days. Thereafter, the rats were subjected to MCAO 90 min/reperfusion 24 hr. At 2 and 24 hr of reperfusion, the rats were assessed for neurological deficits and subsequently executed for the evaluation of cerebral infarct volume, oxidative stress parameters, and the expression of excitatory amino acid transporter 2 (EAAT2) and apoptotic markers. Results indicate that rhGLP-1 significantly ameliorated neurological deficits and reduced cerebral infarct volume in diabetic MCAO rats. In addition, oxidative stress parameters in ischemic penumbra were significantly alleviated in rhGLP-1-pretreated diabetic MCAO rats. rhGLP-1 significantly upregulated the ratio of Bcl-2/Bax and EAAT2 expression and downregulated cleaved caspase-3 expression in ischemic penumbra of diabetic MCAO rats. Our results suggest that rhGLP-1 could significantly ameliorate neurological deficits and reduce cerebral infarct volume in diabetic MCAO rats, which may be due to the inhibition of oxidative stress and apoptosis and the promotion of EAAT2 expression.

    Topics: Animals; Apoptosis; Brain Ischemia; Diabetes Complications; Diabetes Mellitus; Excitatory Amino Acid Transporter 2; Glucagon-Like Peptide 1; Humans; Incretins; Infarction, Middle Cerebral Artery; Neuroprotective Agents; Oxidative Stress; Rats; Recombinant Proteins; Reperfusion Injury

2018
Effects of liraglutide and ischemic postconditioning on myocardial salvage after I/R injury in pigs.
    Scandinavian cardiovascular journal : SCJ, 2017, Volume: 51, Issue:1

    Acute STEMI is routinely treated by acute PCI. This treatment may itself damage the tissue (reperfusion injury). Conditioning with GLP-1 analogs has been shown to reduce reperfusion injury. Likewise, ischemic postconditioning provides cardioprotection following STEMI. We tested if combined conditioning with the GLP-1 analog liraglutide and ischemic postconditioning offered additive cardioprotective effect after reperfusion of 45 min coronary occlusion of left anterior descending artery (LAD).. Fifty-eight non-diabetic female Danish Landrace pigs (60 ± 10kg) were randomly assigned to four groups. Myocardial infarction (MI) was induced by occluding the LAD for 45 min. Group 1 (n = 14) was treated with i.v. liraglutide after 15 min of ischemia. Group 2 (n = 17) received liraglutide treatment concomitant with ischemic postconditioning, after 45 min of ischemia. Group 3 (n = 15) recieved ischemic postconditioning and group 4 (n = 12) was kept as controls.. No intergroup differences in relative infarct size were detected (overall mean 57 ± 3%; p = 0.68). Overall mortality was 34% (CI 25-41%) including 26% post-intervention, with no intergroup differences (p = 0.99). Occurrence of ventricular fibrillation (VF) was 59% (CI 25-80%) including 39% postintervention with no intergroup differences (p = 0.65).. In our closed-chest pig-model, we were unable to detect any cardioprotective effect of liraglutide or ischemic postconditioning either alone or combined.

    Topics: Animals; Balloon Occlusion; Combined Modality Therapy; Disease Models, Animal; Female; Incretins; Ischemic Postconditioning; Liraglutide; Myocardial Infarction; Myocardium; Percutaneous Coronary Intervention; Reperfusion Injury; Swine; Ventricular Fibrillation

2017
Protective Effect of a GLP-1 Analog on Ischemia-Reperfusion Induced Blood-Retinal Barrier Breakdown and Inflammation.
    Investigative ophthalmology & visual science, 2016, 05-01, Volume: 57, Issue:6

    Inflammation associated with blood-retinal barrier (BRB) breakdown is a common feature of several retinal diseases. Therefore, the development of novel nonsteroidal anti-inflammatory approaches may provide important therapeutic options. Previous studies demonstrated that inhibition of dipeptidyl peptidase-IV, the enzyme responsible for the degradation of glucagon-like peptide-1 (GLP-1), led to insulin-independent prevention of diabetes-induced increases in BRB permeability, suggesting that incretin-based drugs may have beneficial pleiotropic effects in the retina. In the current study, the barrier protective and anti-inflammatory properties of exendin-4 (Ex-4), an analog of GLP-1, after ischemia-reperfusion (IR) injury were examined.. Ischemia-reperfusion injury was induced in rat retinas by increasing the intraocular pressure for 45 minutes followed by 48 hours of reperfusion. Rats were treated with Ex-4 prior to and following IR. Blood-retinal barrier permeability was assessed by Evans blue dye leakage. Retinal inflammatory gene expression and leukocytic infiltration were measured by qRT-PCR and immunofluorescence, respectively. A microglial cell line was used to determine the effects of Ex-4 on lipopolysaccharide (LPS)-induced inflammatory response.. Exendin-4 dramatically reduced the BRB permeability induced by IR injury, which was associated with suppression of inflammatory gene expression. Moreover, in vitro studies showed that Ex-4 also reduced the inflammatory response to LPS and inhibited NF-κB activation.. The present work suggests that Ex-4 can prevent IR injury-induced BRB breakdown and inflammation through inhibition of inflammatory cytokine production by activated microglia and may provide a novel option for therapeutic intervention in diseases involving retinal inflammation.

    Topics: Animals; Blood-Retinal Barrier; Cattle; Cells, Cultured; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Immunoblotting; Immunohistochemistry; Incretins; Inflammation; Ischemia; Male; Peptides; Rats; Rats, Long-Evans; Reperfusion Injury; Retinal Diseases; Venoms

2016