incretins and Inflammation

incretins has been researched along with Inflammation* in 47 studies

Reviews

21 review(s) available for incretins and Inflammation

ArticleYear
Incretin and insulin signaling as novel therapeutic targets for Alzheimer's and Parkinson's disease.
    Molecular psychiatry, 2023, Volume: 28, Issue:1

    Despite an ever-growing prevalence and increasing economic burden of Alzheimer's disease (AD) and Parkinson's disease (PD), recent advances in drug development have only resulted in minimally effective treatment. In AD, along with amyloid and tau phosphorylation, there is an associated increase in inflammation/glial activation, a decrease in synaptic function, an increase in astrocyte activation, and a state of insulin resistance. In PD, along with α-synuclein accumulation, there is associated inflammation, synaptic dysfunction, dopaminergic neuronal loss, and some data to suggest insulin resistance. Therapeutic strategies for neurodegenerative disorders have commonly targeted individual pathological processes. An effective treatment might require either utilization of multiple drugs which target the individual pathological processes which underlie the neurodegenerative disease or the use of a single agent which could influence multiple pathological processes. Insulin and incretins are compounds with multiple effects on neurodegenerative processes. Preclinical studies have demonstrated that GLP-1 receptor agonists reduce neuroinflammation, reduce tau phosphorylation, reduce amyloid deposition, increase synaptic function, and improve memory formation. Incretin mimetics may act through the restoration of insulin signaling pathways, inducing further neuroprotective effects. Currently, phase 2 and phase 3 trials are underway in AD and PD populations. Here, we provide a comprehensive review of the therapeutic potential of incretin mimetics and insulin in AD and PD.

    Topics: Alzheimer Disease; Humans; Incretins; Inflammation; Insulin; Insulin Resistance; Neurodegenerative Diseases; Parkinson Disease

2023
Antidiabetic agents as a novel treatment for Alzheimer's and Parkinson's disease.
    Ageing research reviews, 2023, Volume: 89

    Therapeutic strategies for neurodegenerative disorders have commonly targeted individual aspects of the disease pathogenesis to little success. Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by several pathological features. In AD and PD, there is an abnormal accumulation of toxic proteins, increased inflammation, decreased synaptic function, neuronal loss, increased astrocyte activation, and perhaps a state of insulin resistance. Epidemiological evidence has revealed a link between AD/PD and type 2 diabetes mellitus, with these disorders sharing some pathological commonalities. Such a link has opened up a promising avenue for repurposing antidiabetic agents in the treatment of neurodegenerative disorders. A successful therapeutic strategy for AD/PD would likely require a single or several agents which target the separate pathological processes in the disease. Targeting cerebral insulin signalling produces numerous neuroprotective effects in preclinical AD/PD brain models. Clinical trials have shown the promise of approved diabetic compounds in improving motor symptoms of PD and preventing neurodegenerative decline, with numerous further phase II trials and phase III trials underway in AD and PD populations. Alongside insulin signalling, targeting incretin receptors in the brain represents one of the most promising strategies for repurposing currently available agents for the treatment of AD/PD. Most notably, glucagon-like-peptide-1 (GLP-1) receptor agonists have displayed impressive clinical potential in preclinical and early clinical studies. In AD the GLP-1 receptor agonist, liraglutide, has been demonstrated to improve cerebral glucose metabolism and functional connectivity in small-scale pilot trials. Whilst in PD, the GLP-1 receptor agonist exenatide is effective in restoring motor function and cognition. Targeting brain incretin receptors reduces inflammation, inhibits apoptosis, prevents toxic protein aggregation, enhances long-term potentiation and autophagy as well as restores dysfunctional insulin signalling. Support is also increasing for the use of additional approved diabetic treatments, including intranasal insulin, metformin hydrochloride, peroxisome proliferator-activated nuclear receptor γ agonists, amylin analogs, and protein tyrosine phosphatase 1B inhibitors which are in the investigation for deployment in PD and AD treatment. As such, we provide a comprehensive review of

    Topics: Alzheimer Disease; Diabetes Mellitus, Type 2; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Incretins; Inflammation; Insulin; Neurodegenerative Diseases; Neuroprotective Agents; Parkinson Disease

2023
Anti-Inflammatory Effects of GLP-1R Activation in the Retina.
    International journal of molecular sciences, 2022, Oct-17, Volume: 23, Issue:20

    Glucagon-like peptide-1 (GLP-1) is an incretin hormone, mainly produced by enteroendocrine L cells, which participates in the regulation of glucose homeostasis, and in reduction in body weight by promoting satiety. Actions of GLP-1 are mediated by activation of its receptor GLP-1R, which is widely expressed in several tissues including the retina. The effects of GLP-1R activation are useful in the management of type 2 diabetes mellitus (T2DM). In addition, the activation of GLP-1R has anti-inflammatory effects in several organs, suggesting that it may be also useful in the treatment of inflammatory diseases. Inflammation is a common element in the pathogenesis of several ocular diseases, and the protective effects of treatment with GLP-1 emerged also in retinal diseases. In this review we highlight the anti-inflammatory effects of GLP-1R activation in the retina. Firstly, we summarized the pathogenic role of inflammation in ocular diseases. Then, we described the pleiotropic effects of GLP-1R activation on the cellular components of the retina which are mainly involved in the pathogenesis of inflammatory retinal diseases: the retinal ganglion cells, retinal pigment epithelial cells and endothelial cells.

    Topics: Anti-Inflammatory Agents; Diabetes Mellitus, Type 2; Endothelial Cells; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Glucose; Humans; Hypoglycemic Agents; Incretins; Inflammation; Retina; Retinal Diseases

2022
Dietary Influences on the Microbiota-Gut-Brain Axis.
    International journal of molecular sciences, 2021, Mar-28, Volume: 22, Issue:7

    Over unimaginable expanses of evolutionary time, our gut microbiota have co-evolved with us, creating a symbiotic relationship in which each is utterly dependent upon the other. Far from confined to the recesses of the alimentary tract, our gut microbiota engage in complex and bi-directional communication with their host, which have far-reaching implications for overall health, wellbeing and normal physiological functioning. Amongst such communication streams, the microbiota-gut-brain axis predominates. Numerous complex mechanisms involve direct effects of the microbiota, or indirect effects through the release and absorption of the metabolic by-products of the gut microbiota. Proposed mechanisms implicate mitochondrial function, the hypothalamus-pituitary-adrenal axis, and autonomic, neuro-humeral, entero-endocrine and immunomodulatory pathways. Furthermore, dietary composition influences the relative abundance of gut microbiota species. Recent human-based data reveal that dietary effects on the gut microbiota can occur rapidly, and that our gut microbiota reflect our diet at any given time, although much inter-individual variation pertains. Although most studies on the effects of dietary macronutrients on the gut microbiota report on associations with relative changes in the abundance of particular species of bacteria, in broad terms, our modern-day animal-based Westernized diets are relatively high in fats and proteins and impoverished in fibres. This creates a perfect storm within the gut in which dysbiosis promotes localized inflammation, enhanced gut wall permeability, increased production of lipopolysaccharides, chronic endotoxemia and a resultant low-grade systemic inflammatory milieu, a harbinger of metabolic dysfunction and many modern-day chronic illnesses. Research should further focus on the colony effects of the gut microbiota on health and wellbeing, and dysbiotic effects on pathogenic pathways. Finally, we should revise our view of the gut microbiota from that of a seething mass of microbes to one of organ-status, on which our health and wellbeing utterly depends. Future guidelines on lifestyle strategies for wellbeing should integrate advice on the optimal establishment and maintenance of a healthy gut microbiota through dietary and other means. Although we are what we eat, perhaps more importantly, we are what our gut microbiota thrive on and they thrive on what we eat.

    Topics: Animals; Appetite; Autonomic Nervous System; Brain; Diet; Diet, High-Fat; Dietary Fats; Dysbiosis; Endotoxemia; Gastrointestinal Microbiome; Humans; Incretins; Inflammation; Intestines; Lipopolysaccharides; Mice; Mitochondria; Oligosaccharides; Permeability

2021
Anti-inflammatory potentials of incretin-based therapies used in the management of diabetes.
    Life sciences, 2020, Jan-15, Volume: 241

    GLP-1 receptor agonists (GLP-1RA) and dipeptidyl peptidase 4 inhibitors (DPP-4i) are two classes of antidiabetic agents used in the management of diabetes based on incretin hormones. There is emerging evidence that they have anti-inflammatory effects. Since most long-term complications of diabetes have a background of chronic inflammation, these agents may be beneficial against diabetic complications not only due to their hypoglycemic potential but also via their anti-inflammatory effects. However, the exact molecular mechanisms by which GLP-1RAs and DPP-4i exert their anti-inflammatory effects are not clearly understood. In this review, we discuss the potential molecular pathways by which these incretin-based therapies exert their anti-inflammatory effects.

    Topics: Anti-Inflammatory Agents; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Incretins; Inflammation

2020
Potential role of incretins in diabetes and COVID-19 infection: a hypothesis worth exploring.
    Internal and emergency medicine, 2020, Volume: 15, Issue:5

    Patients with diabetes mellitus have been reported to be at a high risk of complications from SARS-CoV2 virus infection (COVID-19). In type 2 diabetes, there is a change in immune system cells, which shift from an anti-inflammatory to a predominantly pro-inflammatory pattern. This altered immune profile may induce important clinical consequences, including increased susceptibility to lung infections; and enhanced local inflammatory response. Furthermore, dipeptidyl peptidase 4 (DPP4) enzyme is highly expressed in the lung, and that it may have additional actions besides its effects on glucose metabolism, which might exert profound pro-inflammatory effects. We briefly review the impact on the inflammatory system of DPP4 for its possible detrimental effect on COVID-19 syndrome, and of DPP4 inhibitors (gliptins), currently used as glucose lowering agents, which may have the potential to exert positive pleiotropic effect on inflammatory diseases, in addition to their effects on glucose metabolism. Thanks to these ancillary effects, gliptins could potentially be "repurposed" as salutary drugs against COVID-19 syndrome, even in non-diabetic subjects. Clinical studies should be designed to investigate this possibility.

    Topics: Animals; Betacoronavirus; Coronavirus Infections; COVID-19; Diabetes Mellitus; Dipeptidyl Peptidase 4; Humans; Incretins; Inflammation; Pandemics; Pneumonia, Viral; Prognosis; SARS-CoV-2

2020
High Glycemic Index Metabolic Damage - a Pivotal Role of GIP and GLP-1.
    Trends in endocrinology and metabolism: TEM, 2018, Volume: 29, Issue:5

    When glucose-fructose dimers are supplied as the slowly digestible, completely absorbable, low glycemic index (GI) sugar isomaltulose, the detrimental effects of high GI sucrose are avoided. This difference requires the presence of intact glucose-induced insulinotropic peptide receptor (GIPR) and is mediated by the rapid uptake of glucose and the stimulation of GIP release from K cells in the upper small intestine. GIP promotes lipogenesis, fatty liver, insulin resistance, and postprandial inflammation, and reduces fat oxidation in skeletal muscle, partly by hypothalamic interference with energy partitioning and epigenetic programming. GIP is similarly required for the detrimental metabolic effects of other high GI carbohydrates. We therefore propose that the release of GIP in the upper small intestine is an important determinant of the metabolic quality of carbohydrates.

    Topics: Animals; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glycemic Index; Humans; Incretins; Inflammation; Insulin; Muscle, Skeletal; Postprandial Period

2018
Neuroprotective Activity of Sitagliptin via Reduction of Neuroinflammation beyond the Incretin Effect: Focus on Alzheimer's Disease.
    BioMed research international, 2018, Volume: 2018

    Sitagliptin is a member of a class of drugs that inhibit dipeptidyl peptidase (DPP-4). It increases the levels of the active form of incretins such as GLP-1 (glucagon-like peptide-1) or GIP (gastric inhibitory polypeptide) and by their means positively affects glucose metabolism. It is successfully applied in the treatment of diabetes mellitus type 2. The most recent scientific reports suggest beneficial effect of sitagliptin on diseases in which neuron damage occurs. Result of experimental studies may indicate a reducing influence of sitagliptin on inflammatory response within encephalon area. Sitagliptin decreased the levels of proinflammatory factors: TNF-

    Topics: Alzheimer Disease; Animals; Blood Glucose; Cytokines; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Hypoglycemic Agents; Incretins; Inflammation; Mice; Sitagliptin Phosphate

2018
Incretin drugs as modulators of atherosclerosis.
    Atherosclerosis, 2018, Volume: 278

    Atherosclerosis is a major underlying cause of ischemic heart diseases, ischemic stroke, and peripheral artery disease. Atherosclerotic plaque progression is characterized by chronic progressive inflammation of the arterial wall, endothelial cell dysfunction, and subendothelial lipoprotein retention. Incretin drugs, glucagon-like peptide-1 receptor (GLP-1R) agonists, and dipeptidyl peptidase-IV (DPP-IV) inhibitors, are promising anti-hyperglycemic agents used for the treatment of type 2 diabetes mellitus (T2DM). In addition to glucose-lowering effects, emerging data suggest that incretin drugs have anti-atherogenic effects with the potential to stabilize atherosclerotic plaques and treat arterial inflammation. Clinical and preclinical studies have reported a plethora of therapeutic benefits of incretin drugs, including modulation of inflammatory response, reduction of intima-media thickening, improvement in lipid profiles, endothelial and smooth muscle cell modulation. Despite extensive research and widespread clinical use of incretin-based therapies, the research on the incretin hormones continues to expand. This review outlines clinical studies, molecular aspects, and potential therapeutic implications of incretin drugs in attenuation of atherosclerosis.

    Topics: Anti-Inflammatory Agents; Atherosclerosis; Blood Glucose; Blood Pressure; Cardiovascular Diseases; Carotid Intima-Media Thickness; Diabetes Complications; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Endothelium, Vascular; Glucagon-Like Peptide-1 Receptor; Homeostasis; Humans; Incretins; Inflammation; Lipids; Peptides

2018
Incretin-Based Therapy for Prevention of Diabetic Vascular Complications.
    Journal of diabetes research, 2016, Volume: 2016

    Diabetic vascular complications are the most common cause of mortality and morbidity worldwide, with numbers of affected individuals steadily increasing. Diabetic vascular complications can be divided into two categories: macrovascular andmicrovascular complications. Macrovascular complications include coronary artery diseaseand cerebrovascular disease, while microvascular complications include retinopathy and chronic kidney disease. These complications result from metabolic abnormalities, including hyperglycemia, elevated levels of free fatty acids, and insulin resistance. Multiple mechanisms have been proposed to mediate the adverse effects of these metabolic disorders on vascular tissues, including stimulation of protein kinase C signaling and activation of the polyol pathway by oxidative stress and inflammation. Additionally, the loss of tissue-specific insulin signaling induced by hyperglycemia and toxic metabolites can induce cellular dysfunction and both macro- and microvascular complications characteristic of diabetes. Despite these insights, few therapeutic methods are available for the management of diabetic complications. Recently, incretin-based therapeutic agents, such as glucagon-like peptide-1 and dipeptidyl peptidase-4 inhibitors, have been reported to elicit vasotropic actions, suggesting a potential for effecting an actual reduction in diabetic vascular complications. The present review will summarize the relationship between multiple adverse biological mechanisms in diabetes and putative incretin-based therapeutic interventions intended to prevent diabetic vascular complications.

    Topics: Animals; Cardiovascular Diseases; Cerebrovascular Circulation; Diabetic Angiopathies; Diabetic Nephropathies; Diabetic Neuropathies; Dipeptidyl-Peptidase IV Inhibitors; Humans; Hypoglycemic Agents; Incretins; Inflammation; Kidney; Oxidative Stress; Protein Kinase C

2016
Anti-atherogenic and anti-inflammatory properties of glucagon-like peptide-1, glucose-dependent insulinotropic polypepide, and dipeptidyl peptidase-4 inhibitors in experimental animals.
    Journal of diabetes investigation, 2016, Volume: 7 Suppl 1

    We reported that native incretins, liraglutide and dipeptidyl peptidase-4 inhibitors (DPP-4i) all confer an anti-atherosclerotic effect in apolipoprotein E-null (Apoe (-/-)) mice. We confirmed the anti-atherogenic property of incretin-related agents in the mouse wire injury model, in which the neointimal formation in the femoral artery is remarkably suppressed. Furthermore, we showed that DPP-4i substantially suppresses plaque formation in coronary arteries with a marked reduction in the accumulation of macrophages in cholesterol-fed rabbits. DPP-4i showed an anti-atherosclerotic effect in Apoe (-/-) mice mainly through the actions of glucagon-like peptide-1 and glucose-dependent insulinotropic polypepide. However, the dual incretin receptor antagonists partially attenuated the suppressive effect of DPP-4i on atherosclerosis in diabetic Apoe (-/-) mice, suggesting an incretin-independent mechanism. Exendin-4 and glucose-dependent insulinotropic polypepide elicited cyclic adenosine monophosphate generation, and suppressed the lipopolysaccharide-induced gene expression of inflammatory molecules, such as interleukin-1β, interleukin-6 and tumor necrosis factor-α, in U937 human monocytes. This suppressive effect, however, was attenuated by an inhibitor of adenylate cyclase and mimicked by 8-bromo-cyclic adenosine monophosphate or forskolin. DPP-4i substantially suppressed the lipopolysaccharide-induced expression of inflammatory cytokines without affecting cyclic adenosine monophosphate generation or cell proliferation. DPP-4i more strongly suppressed the lipopolysaccharide-induced gene expression of inflammatory molecules than incretins, most likely through inactivation of CD26. Glucagon-like peptide-1 and glucose-dependent insulinotropic polypepide suppressed oxidized low-density lipoprotein-induced macrophage foam cell formation in a receptor-dependent manner, which was associated with the downregulation of acyl-coenzyme A cholesterol acyltransferase-1 and CD36, as well as the up-regulation of adenosine triphosphate-binding cassette transporter A1. Our studies strongly suggest that incretin-related agents have favorable effects on macrophage-driven atherosclerosis in experimental animals.

    Topics: Animals; Anti-Inflammatory Agents; Apolipoproteins E; Atherosclerosis; Coronary Restenosis; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Foam Cells; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Humans; Hyperplasia; Incretins; Inflammation; Inflammation Mediators; Liraglutide; Macrophages; Mice; Mice, Knockout; Monocytes

2016
The role of Gut Microbiota in the development of obesity and Diabetes.
    Lipids in health and disease, 2016, Jun-18, Volume: 15

    Obesity and its associated complications like type 2 diabetes (T2D) are reaching epidemic stages. Increased food intake and lack of exercise are two main contributing factors. Recent work has been highlighting an increasingly more important role of gut microbiota in metabolic disorders. It's well known that gut microbiota plays a major role in the development of food absorption and low grade inflammation, two key processes in obesity and diabetes. This review summarizes key discoveries during the past decade that established the role of gut microbiota in the development of obesity and diabetes. It will look at the role of key metabolites mainly the short chain fatty acids (SCFA) that are produced by gut microbiota and how they impact key metabolic pathways such as insulin signalling, incretin production as well as inflammation. It will further look at the possible ways to harness the beneficial aspects of the gut microbiota to combat these metabolic disorders and reduce their impact.

    Topics: Diabetes Mellitus, Type 2; Fatty Acids, Volatile; Gastrointestinal Microbiome; Gastrointestinal Tract; Gene Expression Regulation; Humans; Incretins; Inflammation; Insulin; Intestinal Absorption; Lipid Metabolism; Obesity; Signal Transduction

2016
Dipeptidyl Peptidase 4: A New Link between Diabetes Mellitus and Atherosclerosis?
    BioMed research international, 2015, Volume: 2015

    Type 2 diabetes mellitus (T2DM) has become one of the most prevalent noncommunicable diseases in the past years. It is undoubtedly associated with atherosclerosis and increased risk for cardiovascular diseases. Incretins, which are intestinal peptides secreted during digestion, are able to increase insulin secretion and its impaired function and/or secretion is involved in the pathophysiology of T2DM. Dipeptidyl peptidase 4 (DPP4) is an ubiquitous enzyme that regulates incretins and consequently is related to the pathophysiology of T2DM. DPP4 is mainly secreted by endothelial cells and acts as a regulatory protease for cytokines, chemokines, and neuropeptides involved in inflammation, immunity, and vascular function. In T2DM, the activity of DPP4 seems to be increased and there are a growing number of in vitro and in vivo studies suggesting that this enzyme could be a new link between T2DM and atherosclerosis. Gliptins are a new class of pharmaceutical agents that acts by inhibiting DPP4. Thus, it is expected that gliptin represents a new pharmacological approach not only for reducing glycemic levels in T2DM, but also for the prevention and treatment of atherosclerotic cardiovascular disease in diabetic subjects. We aimed to review the evidences that reinforce the associations between DPP4, atherosclerosis, and T2DM.

    Topics: Atherosclerosis; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Humans; Incretins; Inflammation

2015
Incretin-based therapies, glucometabolic health and endovascular inflammation.
    Current pharmaceutical design, 2014, Volume: 20, Issue:31

    Incretin peptides are a group of gastrointestinal hormones that play a prominent role in the regulation of glucose metabolism. Incretin-based therapies (IBTs) have recently emerged as an important treatment option for patients with type 2 diabetes mellitus (T2DM). These pharmaceutical agents may be specially well suited for patients who are overweight or obese with primarily post-meal glucose peaks, and in whom traditional first-line oral agents have failed to maintain adequate glycemic control. There are 2 classes of IBTs: the dipeptidyl peptidase-4 (DPP-4) inhibitors and the glucagon-like peptide 1 (GLP-1) receptor agonists. The ultimate effect of both types of agents is to augment GLP-1 signaling, which results in enhanced glucose-dependent insulin secretion, inhibition of glucagon secretion and decreased appetite. This leads to improved regulation of glucose homeostasis accompanied by either no increase in body weight (with DPP-4 inhibitors) or a reduction (with GLP-1 receptor agonists). GLP-1 inhibits food intake and the increased GLP-1 response may contribute as a satiety signal. Although data regarding the effect of GLP-1 agonists and DPP-4 inhibitors on levels of peptides involved in the regulation of food intake in T2DM are few, an indirect effect of IBT on weight loss is possible (e.g. Exendin-4 induces adiponectin secretion in vitro). Results from animal models indicate reduction of food intake and body weight by GLP-1 agonists, but follow-up studies are required. A growing amount of evidence suggests that these peptides may also impact the cardiovascular system, including beneficial effects on myocardial cells, lipid profiles and blood pressure as well as reduced markers of systemic inflammation and improved endothelial dysfunction. The potential role of these agents in improving components of the metabolic syndrome and retardation of atherosclerosis needs to be fully elucidated. Although IBTs are currently recommended only for use in the early treatment of T2DM, the 'non-glycemic' actions of these drugs may have far reaching therapeutic implications. It is hoped that future studies will elucidate their potential strengths and weaknesses for use in various metabolic conditions.

    Topics: Animals; Atherosclerosis; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide-1 Receptor; Glucose; Humans; Incretins; Inflammation; Lipoproteins; Metabolic Syndrome

2014
Cardiovascular actions of GLP-1 and incretin-based pharmacotherapy.
    Current diabetes reports, 2014, Volume: 14, Issue:5

    Incretin-based therapy became recently available as antihyperglycemic treatment for patients with type 2 diabetes (T2DM). Incretin therapy comprises glucagon-like peptide receptor agonists (GLP-1RA) and dipeptidyl-peptidase 4 inhibitors (DPP4-I): these classes of drugs not only have the ability to reduce blood glucose, but also can exert several cardioprotective effects. They have been shown to positively influence some risk factors for cardiovascular disease (CVD), to improve endothelial function, and to directly affect cardiac function. For these reasons incretins are considered not only antidiabetic drugs, but also cardiovascular effective. The first clinical trials aimed to demonstrate the safety of DPP4 inhibitors have been recently published: their clinical significance will be discussed in light of the prior experimental findings.

    Topics: Blood Glucose; Blood Pressure; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Endothelium, Vascular; Female; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Incretins; Inflammation; Lipid Metabolism; Male; Myocytes, Cardiac; Receptors, Glucagon

2014
Type 2 diabetes, PUFAs, and vitamin D: their relation to inflammation.
    Journal of immunology research, 2014, Volume: 2014

    Chronic diseases have become one of the most important public health problems, due to their high costs for treatment and prevention. Until now, researchers have considered that the etiology of Type 2 diabetes mellitus (T2DM) is multifactorial. Recently, the study of the innate immune system has offered an explanation model of the pathogenesis of T2DM. On the other hand, there is evidence about the beneficial effect of polyunsaturated fatty acids (PUFA) n-3 and n-6 in patients with chronic inflammatory diseases including diabetes. Furthermore, high vitamin D plasmatic concentrations have been associated with the best performance of pancreatic β cells and the improving of this disease. In conclusion, certain fatty acids in the adequate proportion as well as 25-hydroxivitamin D can modulate the inflammatory response in diabetic people, modifying the evolution of this disease.

    Topics: Adipokines; Blood Glucose; Diabetes Mellitus, Type 2; Fatty Acids, Omega-3; Fatty Acids, Omega-6; Gene Expression; Humans; Immunity, Innate; Incretins; Inflammation; Insulin; Insulin-Secreting Cells; Vitamin D

2014
The role of TRPM2 in pancreatic β-cells and the development of diabetes.
    Cell calcium, 2014, Volume: 56, Issue:5

    TRPM2 is a Ca(2+)-permeable non-selective cation channel that can be activated by adenosine dinucleotides, hydrogen peroxide, or intracellular Ca(2+). The protein is expressed in a wide variety of cells, including neurons in the brain, immune cells, endocrine cells, and endothelial cells. This channel is also well expressed in β-cells in the pancreas. Insulin secretion from pancreatic β-cells is the primary mechanism by which the concentration of blood glucose is reduced. Thus, impairment of insulin secretion leads to hyperglycemia and eventually causes diabetes. Glucose is the principal stimulator of insulin secretion. The primary pathway involved in glucose-stimulated insulin secretion is the ATP-sensitive K(+) (KATP) channel to voltage-gated Ca(2+) channel (VGCC)-mediated pathway. Increases in the intracellular Ca(2+) concentration are necessary for insulin secretion, but VGCC is not sufficient to explain [Ca(2+)]i increases in pancreatic β-cells and the resultant secretion of insulin. In this review, we focus on TRPM2 as a candidate for a [Ca(2+)]i modulator in pancreatic β-cells and its involvement in insulin secretion and development of diabetes. Although further analyses are needed to clarify the mechanism underlying TRPM2-mediated insulin secretion, TRPM2 could be a key player in the regulation of insulin secretion and could represent a new target for diabetes therapy.

    Topics: Calcium; Diabetes Mellitus; Glucose; Humans; Incretins; Inflammation; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; TRPM Cation Channels

2014
Glucagon-like peptide 1 and the cardiovascular system.
    Current diabetes reviews, 2014, Volume: 10, Issue:5

    Glucagon-like peptide 1 (GLP1) is a major incretin hormone. This means that it is secreted by the gut in response to food and helps in reducing post-prandial glucose exertion. It achieves this through a number of mechanisms, including stimulating insulin release by pancreatic β-cells in a glucose-dependent manner; inhibition of glucagon release by pancreatic α-cells (also in a glucose-dependent manner); induction of central appetite suppression and by delaying gastric empting thereby inducing satiety and also reducing the rate of absorption of nutrients. However, GLP1 receptors have been described in a number of extra-pancreatic tissues, including the endothelium and the myocardium. This suggests that the physiological effects of GLP1 extend beyond post-prandial glucose control and raises the possibility that GLP1 might have cardiovascular effects. This is of importance in our understanding of incretin hormone physiology and especially because of the possible implications that it might have with regard to cardiovascular effects of incretin-based therapies, namely DPP-IV inhibitors (gliptins) and GLP1 analogues. This review analyzes the animal and human data on the effects of GLP1 on the cardiovascular system in health and in disease and the currently available data on cardiovascular effects of incretin-based therapies. It is the author's view that the physiological role of GLP1 is not only to minimize postprandial hypoglycaemia, but also protect against it.

    Topics: Animals; Blood Glucose; Cardiovascular System; Diabetes Mellitus; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide 1; Humans; Hypoglycemic Agents; Incretins; Inflammation; Insulin-Secreting Cells; Oxidative Stress; Triglycerides

2014
Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls.
    Diabetes, 2013, Volume: 62, Issue:10

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones that control the secretion of insulin, glucagon, and somatostatin to facilitate glucose disposal. The actions of incretin hormones are terminated via enzymatic cleavage by dipeptidyl peptidase-4 (DPP-4) and through renal clearance. GLP-1 and GIP promote β-cell proliferation and survival in rodents. DPP-4 inhibitors expand β-cell mass, reduce α-cell mass, and inhibit glucagon secretion in preclinical studies; however, whether incretin-based therapies sustain functional β-cell mass in human diabetic subjects remains unclear. GLP-1 and GIP exert their actions predominantly through unique G protein-coupled receptors expressed on β-cells and other pancreatic cell types. Accurate localization of incretin receptor expression in pancreatic ductal or acinar cells in normal or diabetic human pancreas is challenging because antisera used for detection of the GLP-1 receptor often are neither sufficiently sensitive nor specific to yield reliable data. This article reviews recent advances and controversies in incretin hormone action in the pancreas and contrasts established mechanisms with areas of uncertainty. Furthermore, methodological challenges and pitfalls are highlighted and key areas requiring additional scientific investigation are outlined.

    Topics: Acinar Cells; Animals; Atherosclerosis; Blotting, Western; Cell Proliferation; Cricetinae; Diabetes Mellitus; Dipeptidyl-Peptidase IV Inhibitors; Female; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Inflammation; Insulin-Secreting Cells; Male; Mice; Pancreas; Rats; Real-Time Polymerase Chain Reaction; Receptors, Gastrointestinal Hormone; Receptors, Glucagon

2013
An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease.
    Atherosclerosis, 2013, Volume: 226, Issue:2

    The introduction of dipeptidyl peptidase 4 (DPP4) inhibitors for the treatment of Type 2 diabetes acknowledges the fundamental importance of incretin hormones in the regulation of glycemia. Small molecule inhibitors of DPP4 exert their effects via inhibition of enzymatic degradation of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP). The widespread expression of DPP4 in tissues such as the vasculature and immune cells suggests that this protein may play a role in cardiovascular function. DPP4 is known to exert its effects via both enzymatic and non-enzymatic mechanisms. A soluble form of DPP4 lacking the cytoplasmic and transmembrane domain has also been recently recognized. Besides enzymatic inactivation of incretins, DPP4 also mediates degradation of many chemokines and neuropeptides. The non-enzymatic function of DPP4 plays a critical role in providing co-stimulatory signals to T cells via adenosine deaminase (ADA). DPP4 may also regulate inflammatory responses in innate immune cells such as monocytes and dendritic cells. The multiplicity of functions and targets suggests that DPP4 may play a distinct role aside from its effects on the incretin axis. Indeed recent studies in experimental models of atherosclerosis provide evidence for a robust effect for these drugs in attenuating inflammation and plaque development. Several prospective randomized controlled clinical trials in humans with established atherosclerosis are testing the effects of DPP4 inhibition on hard cardiovascular events.

    Topics: Animals; Blood Pressure; Cardiovascular Diseases; Cardiovascular System; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Humans; Incretins; Inflammation; Mice

2013
G-protein-coupled receptors as fat sensors.
    Current opinion in clinical nutrition and metabolic care, 2012, Volume: 15, Issue:2

    It has been demonstrated that fatty acids (FAs) are physiological ligands of G-protein-coupled receptors (GPRs). Activation of the GPRs (40, 41, 43, 84, 119 and 120) by FAs or synthetic agonists modulates several responses. In this review, we discuss the current knowledge on the actions of FA-activated GPRs and their relevance in normal and pathological conditions.. Studies have shown that FA-activated GPRs modulate hormone secretion (incretin, insulin and glucagon), activation of leukocytes and several aspects of metabolism.. Understanding GPR actions and their involvement in the development of insulin-resistance, β-cell failure, dyslipidemia and inflammation associated with obesity, type 2 diabetes, metabolic syndrome and cardiovascular diseases is important for the comprehension of the mechanisms underlying these pathological conditions and for the establishment of new and effective interventions.

    Topics: Animals; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Dyslipidemias; Fatty Acids; Feeding Behavior; Gastrointestinal Tract; Humans; Incretins; Inflammation; Insulin; Insulin Resistance; Insulin Secretion; Insulin-Secreting Cells; Leukocytes; Ligands; Obesity; Receptors, G-Protein-Coupled

2012

Trials

3 trial(s) available for incretins and Inflammation

ArticleYear
Comparative effects of weight loss and incretin-based therapies on vascular endothelial function, fibrinolysis and inflammation in individuals with obesity and prediabetes: A randomized controlled trial.
    Diabetes, obesity & metabolism, 2023, Volume: 25, Issue:2

    To test the hypothesis that glucagon-like peptide-1 receptor (GLP-1R) agonists have beneficial effects on vascular endothelial function, fibrinolysis and inflammation through weight loss-independent mechanisms.. Individuals with obesity and prediabetes were randomized to 14 weeks of the GLP-1R agonist liraglutide, hypocaloric diet or the dipeptidyl peptidase-4 inhibitor sitagliptin in a 2:1:1 ratio. Treatment with drug was double blind and placebo-controlled. Measurements were made at baseline, after 2 weeks prior to significant weight loss and after 14 weeks. The primary outcomes were measures of endothelial function: flow-mediated vasodilation (FMD), plasminogen activator inhibitor-1 (PAI-1) and urine albumin-to-creatinine ratio (UACR).. Eighty-eight individuals were studied (liraglutide N = 44, diet N = 22, sitagliptin N = 22). Liraglutide and diet reduced weight, insulin resistance and PAI-1, while sitagliptin did not. There was no significant effect of any treatment on endothelial vasodilator function measured by FMD. Post hoc subgroup analyses in individuals with baseline FMD below the median, indicative of greater endothelial dysfunction, showed an improvement in FMD by all three treatments. GLP-1R antagonism with exendin (9-39) increased fasting blood glucose but did not change FMD or PAI-1. There was no effect of treatment on UACR. Finally, liraglutide, but not sitagliptin or diet, reduced the chemokine monocyte chemoattractant protein-1 (MCP-1).. Liraglutide and diet reduce weight, insulin resistance and PAI-1. Liraglutide, sitagliptin and diet do not change FMD in obese individuals with prediabetes with normal endothelial function. Liraglutide alone lowers the pro-inflammatory and pro-atherosclerotic chemokine MCP-1, indicating that this beneficial effect is independent of weight loss.

    Topics: Diet, Reducing; Fibrinolysis; Glucagon-Like Peptide-1 Receptor; Humans; Hypoglycemic Agents; Incretins; Inflammation; Insulin Resistance; Liraglutide; Obesity; Plasminogen Activator Inhibitor 1; Prediabetic State; Sitagliptin Phosphate; Weight Loss

2023
Tumour necrosis factor-alpha infusion produced insulin resistance but no change in the incretin effect in healthy volunteers.
    Diabetes/metabolism research and reviews, 2013, Volume: 29, Issue:8

    Type 2 diabetes mellitus (T2DM) is associated with peripheral insulin resistance, impaired incretin effect, and increased plasma levels of tumour necrosis factor-alpha (TNF-α). Although TNF-α infusion at a dose that induces systemic inflammation in healthy volunteers has been demonstrated to induce peripheral insulin resistance, the influence of this cytokine on the incretin effect is unknown.. We investigated whether systemic inflammation induced by TNF-α infusion in healthy volunteers alters the incretin hormone response to oral and intravenous glucose loads in a crossover study design with ten healthy male volunteers (mean age 24 years, mean body mass index 23.7 kg/m(2) ). The study consisted of four study days: days 1 and 2, 6-h infusion of saline; days 3 and 4, 6-h infusion of TNF-α; days 1 and 3, 4-h oral glucose tolerance test; and days 2 and 4, 4-h corresponding intravenous isoglycaemic glucose tolerance test. Glucose tolerance tests were initiated after 2 h of saline/TNF-α infusion. Plasma concentrations of TNF-α, interleukin 6, glucose, incretin hormones, and cortisol, and serum concentrations of C-peptide and insulin were measured throughout the study days. Insulin sensitivity was estimated by the Matsuda index and homeostasis model assessment of insulin resistance (HOMA-IR). Prehepatic insulin secretion rates were calculated.. TNF-α infusion induced symptoms of systemic inflammation; increased plasma levels of cortisol, TNF-α, and interleukin 6; and increased the HOMA-IR. The secretion of incretin hormones as well as the incretin effect remained unchanged.. In healthy young male volunteers, acute systemic inflammation induced by infusion of TNF-α is associated with insulin resistance with no change in the incretin effect.

    Topics: Adolescent; Adult; Blood Glucose; C-Peptide; Cross-Over Studies; Cytokines; Glucose Tolerance Test; Healthy Volunteers; Humans; Hydrocortisone; Incretins; Inflammation; Insulin; Insulin Resistance; Male; Tumor Necrosis Factor-alpha; Young Adult

2013
Vitamin C further improves the protective effect of glucagon-like peptide-1 on acute hypoglycemia-induced oxidative stress, inflammation, and endothelial dysfunction in type 1 diabetes.
    Diabetes care, 2013, Volume: 36, Issue:12

    To test the hypothesis that acute hypoglycemia induces endothelial dysfunction and inflammation through the generation of an oxidative stress. Moreover, to test if the antioxidant vitamin C can further improve the protective effects of glucagon-like peptide 1 (GLP-1) on endothelial dysfunction and inflammation during hypoglycemia in type 1 diabetes.. A total of 20 type 1 diabetic patients underwent four experiments: a period of 2 h of acute hypoglycemia with or without infusion of GLP-1 or vitamin C or both. At baseline, after 1 and 2 h, glycemia, plasma nitrotyrosine, plasma 8-iso prostaglandin F2a (PGF2a), soluble intracellular adhesion molecule-1a (sICAM-1a), interleukin-6 (IL-6), and flow-mediated vasodilation were measured. At 2 h of hypoglycemia, flow-mediated vasodilation significantly decreased, while sICAM-1, 8-iso-PGF2a, nitrotyrosine, and IL-6 significantly increased. The simultaneous infusion of GLP-1 or vitamin C significantly attenuated all of these phenomena. Vitamin C was more effective. When GLP-1 and vitamin C were infused simultaneously, the deleterious effect of hypoglycemia was almost completely counterbalanced.. At 2 h of hypoglycemia, flow-mediated vasodilation significantly decreased, while sICAM-1, 8-iso-PGF2a, nitrotyrosine, and IL-6 significantly increased. The simultaneous infusion of GLP-1 or vitamin C significantly attenuated all of these phenomena. Vitamin C was more effective. When GLP-1 and vitamin C were infused simultaneously, the deleterious effect of hypoglycemia was almost completely counterbalanced.. This study shows that vitamin C infusion, during induced acute hypoglycemia, reduces the generation of oxidative stress and inflammation, improving endothelial dysfunction, in type 1 diabetes. Furthermore, the data support a protective effect of GLP-1 during acute hypoglycemia, but also suggest the presence of an endothelial resistance to the action of GLP-1, reasonably mediated by oxidative stress.

    Topics: Acute Disease; Antioxidants; Ascorbic Acid; Blood Glucose; Diabetes Mellitus, Type 1; Dose-Response Relationship, Drug; Drug Therapy, Combination; Endothelium, Vascular; Female; Follow-Up Studies; Glucagon-Like Peptide 1; Humans; Hypoglycemia; Hypoglycemic Agents; Incretins; Inflammation; Infusions, Intravenous; Insulin; Male; Oxidative Stress; Vasodilation; Young Adult

2013

Other Studies

23 other study(ies) available for incretins and Inflammation

ArticleYear
Genetic disruption of the Gipr in Apoe
    Molecular metabolism, 2022, Volume: 65

    The gut hormone glucose-dependent insulinotropic polypeptide (GIP) stimulates beta cell function and improves glycemia through its incretin actions. GIP also regulates endothelial function and suppresses adipose tissue inflammation through control of macrophage activity. Activation of the GIP receptor (GIPR) attenuates experimental atherosclerosis and inflammation in mice, however whether loss of GIPR signaling impacts the development of atherosclerosis is uncertain.. Atherosclerosis and related metabolic phenotypes were studied in Apoe. Body weight was lower, circulating myeloid cells were reduced, and glucose tolerance was not different, however, aortic atherosclerosis was increased in Apoe. Loss of the Gipr in mice results in increased aortic atherosclerosis and enhanced inflammation in aorta and liver, despite reduced weight gain and preserved glucose homeostasis. These findings extend concepts of GIPR in the suppression of inflammation-related pathophysiology beyond its classical incretin role in the control of metabolism.

    Topics: Animals; Apolipoproteins E; Atherosclerosis; Blood Glucose; Body Weight; Gastric Inhibitory Polypeptide; Incretins; Inflammation; Mice; Proprotein Convertase 9; Receptors, G-Protein-Coupled; Receptors, Gastrointestinal Hormone; RNA, Messenger

2022
Colonic inflammation induces changes in glucose levels through modulation of incretin system.
    Pharmacological reports : PR, 2021, Volume: 73, Issue:6

    The role of the incretin hormone, glucagon-like peptide (GLP-1), in Crohn's disease (CD), is still poorly understood. The aim of this study was to investigate whether colitis is associated with changes in blood glucose levels and the possible involvement of the incretin system as an underlaying factor.. We used a murine model of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS). Macroscopic and microscopic score and expression of inflammatory cytokines were measured. The effect of colitis on glucose level was studied by measurement of fasting glucose and GLP-1, dipeptidyl peptidase IV (DPP IV) levels, prohormone convertase 1/3 (PC 1/3) and GLP-1 receptor (GLP-1R) expression in mice. We also measured the level of GLP-1, DPP IV and expression of glucagon (GCG) and PC 1/3 mRNA in serum and colon samples from healthy controls and CD patients.. Fasting glucose levels were increased in animals with colitis compared to controls. GLP-1 was decreased in both serum and colon of mice with colitis in comparison to the control group. DPP IV levels were significantly increased in serum, but not in the colon of mice with colitis as compared to healthy animals. Furthermore, PC 1/3 and GLP-1R expression levels were increased in mice with colitis as compared to controls. In humans, no differences were observed in fasting glucose level between healthy subjects and CD patients. GLP-1 levels were significantly decreased in the serum. Interestingly, GLP-1 level was significantly increased in colon samples of CD patients compared to healthy subjects. No significant differences in DPP IV levels in serum and colon samples were observed between groups.. Changes in the incretin system during colitis seem to contribute to the impaired glucose levels. Differences in incretin levels seem to be modulated by degrading enzyme DPP-IV and PC 1/3. Obtained results suggest that the incretin system may become a novel therapeutic approach in the treatment of CD.

    Topics: Adult; Animals; Blood Glucose; Case-Control Studies; Colitis; Crohn Disease; Dipeptidyl Peptidase 4; Disease Models, Animal; Female; Glucagon-Like Peptide 1; Humans; Incretins; Inflammation; Male; Mice; Mice, Inbred C57BL; Middle Aged; Proprotein Convertase 1; Trinitrobenzenesulfonic Acid; Young Adult

2021
Saxagliptin ameliorated the depressive-like behavior induced by chronic unpredictable mild stress in rats: Impact on incretins and AKT/PI3K pathway.
    European journal of pharmacology, 2021, Dec-05, Volume: 912

    Depression is a widespread, withering illness, resulting in a massive personal suffering and economic loss. The chronic exposure to stress may be involved in the etiology of human psychiatric disorders; such as depression. In the current study, the animals were subjected to chronic unpredictable mild stress (CUMS) for 14 days. Saxagliptin (SAXA) is a member of dipeptidyl peptidase-4 (DPP-4) inhibitors class. The current study was the first one to examine the anti-depressive effect of SAXA in an experimental model of CUMS-induced depression in rats and the possible underlying mechanisms. Animals were orally treated with SAXA (0.5, 1 and 2 mg/kg) for 14 days. SAXA treatment reversed the CUMS-induced alterations in the behavioral, biochemical as well as histopathological parameters. Moreover, it hindered the CUMS-induced increase in the oxidative stress, inflammatory, and apoptotic markers. On the other hand, it increased the monoamines levels and the neurogenic brain derived neurotrophic factor (BDNF). In addition, SAXA treatment increased the incretin hormones, glucagon like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), which are linked to the activation of protein kinase B (AKT)/phosphatidylinositol3-kinase (PI3K) pathway. In conclusion, the current study revealed that the modulation of the interplay between the key events involved in depression, including oxidative stress, inflammation, and GLP-1/PI3K/AKT signaling pathway, can explain the anti-depressant activity of SAXA.

    Topics: Adamantane; Animals; Antidepressive Agents; Behavior, Animal; Biogenic Monoamines; Brain; Brain-Derived Neurotrophic Factor; Caspase 3; Depression; Dipeptides; Disease Models, Animal; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Incretins; Inflammation; Male; Oxidative Stress; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction; Stress, Psychological

2021
Circulating Levels of Soluble Dipeptidyl Peptidase-4 Are Dissociated from Inflammation and Induced by Enzymatic DPP4 Inhibition.
    Cell metabolism, 2019, 02-05, Volume: 29, Issue:2

    Dipeptidyl peptidase-4 (DPP-4) controls glucose homeostasis through enzymatic termination of incretin action. We report that plasma DPP-4 activity correlates with body weight and fat mass, but not glucose control, in mice. Genetic disruption of adipocyte Dpp4 expression reduced plasma DPP-4 activity in older mice but did not perturb incretin levels or glucose homeostasis. Knockdown of hepatocyte Dpp4 completely abrogated the obesity-associated increase in plasma DPP-4 activity, reduced liver cytokine expression, and partially attenuated inflammation in adipose tissue without changes in incretin levels or glucose homeostasis. In contrast, circulating levels of soluble DPP4 (sDPP4) were dissociated from inflammation in mice with endothelial-selective or global genetic inactivation of Dpp4. Remarkably, inhibition of DPP-4 enzymatic activity upregulated circulating levels of sDPP4 originating from endothelial or hematopoietic cells without inducing systemic or localized inflammation. Collectively, these findings reveal unexpected complexity in regulation of soluble versus enzymatic DPP-4 and control of inflammation and glucose homeostasis.

    Topics: 3T3-L1 Cells; Animals; Cytokines; Dipeptidyl Peptidase 4; Glucose; Hepatocytes; Incretins; Inflammation; Mice; Mice, Inbred C57BL; Obesity

2019
Diabetogenesis in Rheumatoid Arthritis: Do Inflammation and Glucocorticoid-induced Incretin Overproduction Cause β-Cell Overcompensation and Consequent Premature Decompensation?
    The Journal of rheumatology, 2019, Volume: 46, Issue:3

    Topics: Arthritis, Rheumatoid; Female; Glucocorticoids; Humans; Incretins; Inflammation; Insulin Resistance; Pregnancy

2019
Natural and Artificial Sweeteners and High Fat Diet Modify Differential Taste Receptors, Insulin, and TLR4-Mediated Inflammatory Pathways in Adipose Tissues of Rats.
    Nutrients, 2019, Apr-19, Volume: 11, Issue:4

    It is difficult to know if the cause for obesity is the type of sweetener, high fat (HF) content, or the combination of sweetener and fat. The purpose of the present work was to study different types of sweeteners; in particular, steviol glycosides (SG), glucose, fructose, sucrose, brown sugar, honey, SG + sucrose (SV), and sucralose on the functionality of the adipocyte. Male Wistar rats were fed for four months with different sweeteners or sweetener with HF added. Taste receptors T1R2 and T1R3 were differentially expressed in the tongue and intestine by sweeteners and HF. The combination of fat and sweetener showed an additive effect on circulating levels of GIP and GLP-1 except for honey, SG, and brown sugar. In adipose tissue, sucrose and sucralose stimulated TLR4, and c-Jun N-terminal (JNK). The combination of HF with sweeteners increased NFκB, with the exception of SG and honey. Honey kept the insulin signaling pathway active and the smallest adipocytes in white (WAT) and brown (BAT) adipose tissue and the highest expression of adiponectin, PPARγ, and UCP-1 in BAT. The addition of HF reduced mitochondrial branched-chain amino transferase (BCAT2) branched-chain keto acid dehydrogenase E1 (BCKDH) and increased branched chain amino acids (BCAA) levels by sucrose and sucralose. Our data suggests that the consumption of particular honey maintained functional adipocytes despite the consumption of a HF diet.

    Topics: 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide); Adiponectin; Adipose Tissue; Animals; Diet, High-Fat; Dietary Fats; Dietary Sugars; Honey; Incretins; Inflammation; Insulin; Male; Membrane Transport Proteins; Mitochondrial Proteins; Monocarboxylic Acid Transporters; NF-kappa B; Obesity; PPAR gamma; Rats, Wistar; Solute Carrier Proteins; Stevia; Sucrose; Sweetening Agents; Taste; Taste Buds; Toll-Like Receptor 4; Transaminases; Uncoupling Protein 1

2019
GI inflammation Increases Sodium-Glucose Cotransporter Sglt1.
    International journal of molecular sciences, 2019, May-23, Volume: 20, Issue:10

    A correlation between gastrointestinal (GI) inflammation and gut hormones has reported that inflammatory stimuli including bacterial endotoxins, lipopolysaccharides (LPS), TNFα, IL-1β, and IL-6 induces high levels of incretin hormone leading to glucose dysregulation. Although incretin hormones are immediately secreted in response to environmental stimuli, such as nutrients, cytokines, and LPS, but studies of glucose-induced incretin secretion in an inflamed state are limited. We hypothesized that GI inflammatory conditions induce over-stimulated incretin secretion via an increase of glucose-sensing receptors. To confirm our hypothesis, we observed the alteration of glucose-induced incretin secretion and glucose-sensing receptors in a GI inflammatory mouse model, and we treated a conditioned media (Mϕ 30%) containing inflammatory cytokines in intestinal epithelium cells and enteroendocrine L-like NCI-H716 cells. In GI-inflamed mice, we observed that over-stimulated incretin secretion and insulin release in response to glucose and sodium glucose cotransporter (Sglt1) was increased. Incubation with Mϕ 30% increases Sglt1 and induces glucose-induced GLP-1 secretion with increasing intracellular calcium influx. Phloridzin, an sglt1 inhibitor, inhibits glucose-induced GLP-1 secretion, ERK activation, and calcium influx. These findings suggest that the abnormalities of incretin secretion leading to metabolic disturbances in GI inflammatory disease by an increase of Sglt1.

    Topics: Animals; Cell Line; Cells, Cultured; Female; Gastric Inhibitory Polypeptide; Gastroenteritis; Glucagon-Like Peptide 1; Glucose; Incretins; Inflammation; Insulin; Intestinal Mucosa; Mice, Inbred C57BL; Sodium-Glucose Transporter 1

2019
Stimulation of the endogenous incretin glucose-dependent insulinotropic peptide by enteral dextrose improves glucose homeostasis and inflammation in murine endotoxemia.
    Translational research : the journal of laboratory and clinical medicine, 2018, Volume: 193

    Loss of glucose homeostasis during sepsis is associated with increased organ dysfunction and higher mortality. Novel therapeutic strategies to promote euglycemia in sepsis are needed. We have previously shown that early low-level intravenous (IV) dextrose suppresses pancreatic insulin secretion and induces insulin resistance in septic mice, resulting in profound hyperglycemia and worsened systemic inflammation. In this study, we hypothesized that administration of low-level dextrose via the enteral route would stimulate intestinal incretin hormone production, potentiate insulin secretion in a glucose-dependent manner, and thereby improve glycemic control in the acute phase of sepsis. We administered IV or enteral dextrose to 10-week-old male C57BL/6J mice exposed to bacterial endotoxin and measured incretin hormone release, glucose disposal, and proinflammatory cytokine production. Compared with IV administration, enteral dextrose increased circulating levels of the incretin hormone glucose-dependent insulinotropic peptide (GIP) associated with increased insulin release and insulin sensitivity, improved mean arterial pressure, and decreased proinflammatory cytokines in endotoxemic mice. Exogenous GIP rescued glucose metabolism, improved blood pressure, and increased insulin release in endotoxemic mice receiving IV dextrose, whereas pharmacologic inhibition of GIP signaling abrogated the beneficial effects of enteral dextrose. Thus, stimulation of endogenous GIP secretion by early enteral dextrose maintains glucose homeostasis and attenuates the systemic inflammatory response in endotoxemic mice and may provide a therapeutic target for improving glycemic control and clinical outcomes in patients with sepsis.

    Topics: Animals; Endotoxemia; Gastric Inhibitory Polypeptide; Glucagon-Like Peptide 1; Glucose; Homeostasis; Incretins; Inflammation; Insulin Resistance; Male; Mice; Mice, Inbred C57BL

2018
Plasma endocannabinoid levels in lean, overweight, and obese humans: relationships to intestinal permeability markers, inflammation, and incretin secretion.
    American journal of physiology. Endocrinology and metabolism, 2018, 10-01, Volume: 315, Issue:4

    Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation; however, little is known of these effects in humans. This study aimed to 1) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl- sn-glycerol (2-AG), and OEA in humans; and 2) examine relationships to intestinal permeability, inflammation markers, and incretin hormone secretion. Twenty lean, 18 overweight, and 19 obese participants underwent intraduodenal Intralipid infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumor necrosis factor-α (TNFα), glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and Toll-like receptor 4 (TLR4) (by RT-PCR) were assessed. Fasting plasma AEA was increased in obese compared with lean and overweight patients ( P < 0.05), with no effect of BMI group or ID lipid infusion on plasma 2-AG or OEA. Duodenal expression of IAP and ZO-1 was reduced in obese compared with lean ( P < 0.05), and these levels related negatively to plasma AEA ( P < 0.05). The iAUC for AEA was positively related to iAUC GIP ( r = 0.384, P = 0.005). Obese individuals have increased plasma AEA and decreased duodenal expression of ZO-1 and IAP compared with lean and overweight subjects. The relationships between plasma AEA with duodenal ZO-1, IAP, and GIP suggest that altered endocannabinoid signaling may contribute to changes in intestinal permeability, inflammation, and incretin release in human obesity.

    Topics: Adult; Alkaline Phosphatase; Arachidonic Acids; Dietary Fats; Duodenum; Endocannabinoids; Female; Gastric Inhibitory Polypeptide; Gene Expression; Glucagon-Like Peptide 1; Glycerides; GPI-Linked Proteins; Humans; Incretins; Inflammation; Male; Obesity; Occludin; Oleic Acids; Overweight; Permeability; Polyunsaturated Alkamides; Thinness; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha; Zonula Occludens-1 Protein

2018
Mast Cell and M1 Macrophage Infiltration and Local Pro-Inflammatory Factors Were Attenuated with Incretin-Based Therapies in Obesity-Related Glomerulopathy.
    Metabolic syndrome and related disorders, 2017, Volume: 15, Issue:7

    The global increase of obesity parallels the obesity-related glomerulopathy (ORG) epidemic. Dipeptidyl peptidase 4 inhibitors and glucagon-like peptide-1 receptor agonists were well recognized to attenuate renal injury independent of glucose control in diabetic nephropathy. There are limited studies focusing on their effects on ORG. We explored the effects of incretin-based therapies on early ORG and the inflammatory responses involved mainly concentrated on mast cell (MC) and macrophage (M) infiltration and local pro-inflammatory factors.. ORG rat models were induced by high-fat diet and then divided into ORG vehicle, vildagliptin (3 mg/kg/day, qd) and liraglutide (200 μg/kg, bid) treated groups. After 8 weeks of treatments, albuminuria, glomerular histology, renal inflammatory cell infiltration, and pro-inflammatory factors were analyzed.. Early ORG model was demonstrated by albuminuria, glomerulomegaly, foot process fusion, and mesangial and endothelial mild proliferation. Incretin-based therapies limited body weight gain and improved insulin sensitivity. ORG was alleviated, manifested by decreased average glomerular area, attenuated mesangial and endothelial cell proliferation, and revived cell-to-cell propagation of podocytes, which contributed to reduced albuminuria. Compared with ORG vehicle, MC and M1 macrophage (pro-inflammatory) infiltration and M1/M2 ratio were significantly decreased; M2 macrophage (anti-inflammatory) was not significantly increased after incretin-based treatments. Tumor necrosis factor-α (TNF-α) and IL-6 in renal cortex were significantly downregulated, while transforming growth factor-β1 (TGF-β1) remained unchanged.. Incretin-based treatments could alleviate high-fat diet-induced ORG partly through the systemic insulin sensitivity improvement and the attenuated local inflammation, mainly by the decrease of MC and M1 macrophage infiltration and reduction of TNF-α and IL-6.

    Topics: Adamantane; Albuminuria; Animals; Creatinine; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Glucose Tolerance Test; Incretins; Inflammation; Interleukin-6; Kidney Diseases; Kidney Glomerulus; Liraglutide; Macrophages; Male; Mast Cells; Nitriles; Obesity; Pyrrolidines; Rats; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha; Vildagliptin

2017
Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity.
    Cell metabolism, 2017, Oct-03, Volume: 26, Issue:4

    Chronic inflammation has been proposed to contribute to the pathogenesis of diet-induced obesity. However, scarce therapeutic options are available to treat obesity and the associated immunometabolic complications. Glucocorticoids are routinely employed for the management of inflammatory diseases, but their pleiotropic nature leads to detrimental metabolic side effects. We developed a glucagon-like peptide-1 (GLP-1)-dexamethasone co-agonist in which GLP-1 selectively delivers dexamethasone to GLP-1 receptor-expressing cells. GLP-1-dexamethasone lowers body weight up to 25% in obese mice by targeting the hypothalamic control of feeding and by increasing energy expenditure. This strategy reverses hypothalamic and systemic inflammation while improving glucose tolerance and insulin sensitivity. The selective preference for GLP-1 receptor bypasses deleterious effects of dexamethasone on glucose handling, bone integrity, and hypothalamus-pituitary-adrenal axis activity. Thus, GLP-1-directed glucocorticoid pharmacology represents a safe and efficacious therapy option for diet-induced immunometabolic derangements and the resulting obesity.

    Topics: Animals; Body Weight; Dexamethasone; Energy Metabolism; Glucagon-Like Peptide 1; Glucocorticoids; Glucose; HEK293 Cells; Humans; Hypothalamus; Incretins; Inflammation; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity

2017
Molecular and cellular mechanisms of glucagon-like peptide-1 receptor agonist-mediated attenuation of cardiac fibrosis.
    Diabetes & vascular disease research, 2016, Volume: 13, Issue:1

    Glucagon-like peptide-1 receptor agonists may have a role in modulation of cardiac fibrosis. Our study aimed to determine the effect of the glucagon-like peptide-1 receptor agonist liraglutide in obesity, hypertension and age-induced murine models of cardiac fibrosis and identify associated molecular mechanisms.. C57Bl/6J mice on a high-fat diet and C57Bl/6J mice on a normal chow diet treated with angiotensin II were used to induce obesity and hypertension-mediated cardiac fibrosis, respectively. C57Bl/6J mice 20 months old were used to study age-induced cardiac fibrosis. Liraglutide treatment of 30 µg/kg/day-300 µg/kg s.c. twice daily was administered for 4 weeks.. Liraglutide treatment attenuated obesity, hypertension and age-induced increases in interstitial cardiac fibrosis and expression of inflammatory and oxidative stress markers.. These observations identify a potential role for liraglutide in the prevention of cardiac fibrosis and identify molecular mechanisms associated with these effects.

    Topics: Aging; Angiotensin II; Animals; Aorta; Blood Pressure; Body Weight; Chemokine CCL2; Diet, High-Fat; Disease Models, Animal; Endothelium, Vascular; Fibrosis; Glucagon-Like Peptide-1 Receptor; Heart; Heart Diseases; Hypertension; I-kappa B Proteins; Immunohistochemistry; Incretins; Inflammation; Interleukin-10; Liraglutide; Macrophages; Male; Mice; Mice, Inbred C57BL; Myocardium; NF-kappa B p50 Subunit; Obesity; Oxidative Stress; Real-Time Polymerase Chain Reaction; Vasoconstrictor Agents; Vimentin

2016
A Dipeptidyl Peptidase-4 Inhibitor but not Incretins Suppresses Abdominal Aortic Aneurysms in Angiotensin II-Infused Apolipoprotein E-Null Mice.
    Journal of atherosclerosis and thrombosis, 2016, Volume: 23, Issue:4

    The main pathophysiology of abdominal aortic aneurysm (AAA) considerably overlaps with that of atherosclerosis. We reported that incretins [glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP)] or a dipeptidyl peptidase-4 inhibitor (DPP-4I) suppressed atherosclerosis in apolipoprotein E-null (Apoe-/-) mice. Here we investigated the effects of incretin-related agents on AAA in a mouse model.. Apoe-/- mice maintained on an atherogenic diet were subcutaneously infused with saline, Ang II (2000 ng/kg/min), Ang II, and native GLP-1 (2.16 nmol/kg/day) or Ang II and native GIP (25 nmol/kg/day) for 4 weeks. DPP-4I (MK0626, 6 mg/kg/day) was provided in the diet to the Ang II-infused mice with or without incretin receptor antagonists [(Pro3) GIP and exendin (9-39)].. AAA occurred in 70% of the animals receiving Ang II. DPP-4I reduced this rate to 40% and significantly suppressed AAA dilatation, fibrosis, and thrombosis. In contrast, incretins failed to attenuate AAA. Incretin receptor blockers did not reverse the suppressive effects of DPP-4I on AAA. In the aorta, DPP-4I significantly reduced the expression of Interleukin-1β and increased that of tissue inhibitor of metalloproteinase (TIMP)-2. In addition, DPP-4I increased the ratio of TIMP-2 to matrix metalloproteinases-9.. DPP-4I, MK0626, but not native incretins has protective effects against AAA in Ang II-infused Apoe-/- mice via suppression of inflammation, proteolysis, and fibrosis in the aortic wall.

    Topics: Angiotensin II; Animals; Aorta; Aortic Aneurysm, Abdominal; Apolipoproteins E; Blood Pressure; Dipeptidyl-Peptidase IV Inhibitors; Gastric Inhibitory Polypeptide; Gene Expression Regulation; Glucagon-Like Peptide 1; Incretins; Inflammation; Interleukin-1beta; Male; Matrix Metalloproteinase 9; Mice; Mice, Knockout; Plaque, Atherosclerotic; Tissue Inhibitor of Metalloproteinase-2

2016
Protective Effect of a GLP-1 Analog on Ischemia-Reperfusion Induced Blood-Retinal Barrier Breakdown and Inflammation.
    Investigative ophthalmology & visual science, 2016, 05-01, Volume: 57, Issue:6

    Inflammation associated with blood-retinal barrier (BRB) breakdown is a common feature of several retinal diseases. Therefore, the development of novel nonsteroidal anti-inflammatory approaches may provide important therapeutic options. Previous studies demonstrated that inhibition of dipeptidyl peptidase-IV, the enzyme responsible for the degradation of glucagon-like peptide-1 (GLP-1), led to insulin-independent prevention of diabetes-induced increases in BRB permeability, suggesting that incretin-based drugs may have beneficial pleiotropic effects in the retina. In the current study, the barrier protective and anti-inflammatory properties of exendin-4 (Ex-4), an analog of GLP-1, after ischemia-reperfusion (IR) injury were examined.. Ischemia-reperfusion injury was induced in rat retinas by increasing the intraocular pressure for 45 minutes followed by 48 hours of reperfusion. Rats were treated with Ex-4 prior to and following IR. Blood-retinal barrier permeability was assessed by Evans blue dye leakage. Retinal inflammatory gene expression and leukocytic infiltration were measured by qRT-PCR and immunofluorescence, respectively. A microglial cell line was used to determine the effects of Ex-4 on lipopolysaccharide (LPS)-induced inflammatory response.. Exendin-4 dramatically reduced the BRB permeability induced by IR injury, which was associated with suppression of inflammatory gene expression. Moreover, in vitro studies showed that Ex-4 also reduced the inflammatory response to LPS and inhibited NF-κB activation.. The present work suggests that Ex-4 can prevent IR injury-induced BRB breakdown and inflammation through inhibition of inflammatory cytokine production by activated microglia and may provide a novel option for therapeutic intervention in diseases involving retinal inflammation.

    Topics: Animals; Blood-Retinal Barrier; Cattle; Cells, Cultured; Disease Models, Animal; Exenatide; Glucagon-Like Peptide 1; Immunoblotting; Immunohistochemistry; Incretins; Inflammation; Ischemia; Male; Peptides; Rats; Rats, Long-Evans; Reperfusion Injury; Retinal Diseases; Venoms

2016
Effects of Exendin-4 on human adipose tissue inflammation and ECM remodelling.
    Nutrition & diabetes, 2016, 12-12, Volume: 6, Issue:12

    Subjects with type-2 diabetes are typically obese with dysfunctional adipose tissue (AT). Glucagon-like peptide-1 (GLP-1) analogues are routinely used to improve glycaemia. Although, they also aid weight loss that improves AT function, their direct effect on AT function is unclear. To explore GLP-1 analogues' influence on human AT's cytokine and extracellular matrix (ECM) regulation, we therefore obtained and treated omental (OMAT) and subcutaneous (SCAT) AT samples with Exendin-4, an agonist of the GLP-1 receptor (GLP-1R).. OMAT and abdominal SCAT samples obtained from women during elective surgery at the Royal Devon & Exeter Hospital (UK) were treated with increasing doses of Exendin-4. Changes in RNA expression of adipokines, inflammatory cytokines, ECM components and their regulators were assessed and protein secretion analysed by ELISA. GLP-1R protein accumulation was compared in paired AT depot samples.. Exendin-4 induced an increase in OMAT adiponectin (P=0.02) and decrease in elastin expression (P=0.03) in parallel with reduced elastin secretion (P=0.04). In contrast to OMAT, we did not observe an effect on SCAT. There was no change in the expression of inflammatory markers (CD14, TNFA, MCP-1), collagens, TGFB1 or CTGF. GLP-1R accumulation was higher in SCAT.. Independently of weight loss, which may bias findings of in vivo studies, GLP-1 analogues modify human OMAT physiology favourably by increasing the insulin-sensitising cytokine adiponectin. However, the reduction of elastin and no apparent effect on AT's inflammatory cytokines suggest that GLP-1 analogues may be less beneficial to AT function, especially if there is no associated weight loss.

    Topics: Adipokines; Adiponectin; Adipose Tissue; Aged; Cytokines; Dose-Response Relationship, Drug; Elastin; Exenatide; Extracellular Matrix; Female; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Inflammation; Middle Aged; Overweight; Peptides; Venoms

2016
Sirtuin 6 expression and inflammatory activity in diabetic atherosclerotic plaques: effects of incretin treatment.
    Diabetes, 2015, Volume: 64, Issue:4

    The role of sirtuin 6 (SIRT6) in atherosclerotic progression of diabetic patients is unknown. We evaluated SIRT6 expression and the effect of incretin-based therapies in carotid plaques of asymptomatic diabetic and nondiabetic patients. Plaques were obtained from 52 type 2 diabetic and 30 nondiabetic patients undergoing carotid endarterectomy. Twenty-two diabetic patients were treated with drugs that work on the incretin system, GLP-1 receptor agonists, and dipeptidyl peptidase-4 inhibitors for 26 ± 8 months before undergoing the endarterectomy. Compared with nondiabetic plaques, diabetic plaques had more inflammation and oxidative stress, along with a lesser SIRT6 expression and collagen content. Compared with non-GLP-1 therapy-treated plaques, GLP-1 therapy-treated plaques presented greater SIRT6 expression and collagen content, and less inflammation and oxidative stress, indicating a more stable plaque phenotype. These results were supported by in vitro observations on endothelial progenitor cells (EPCs) and endothelial cells (ECs). Indeed, both EPCs and ECs treated with high glucose (25 mmol/L) in the presence of GLP-1 (100 nmol/L liraglutide) presented a greater SIRT6 and lower nuclear factor-κB expression compared with cells treated only with high glucose. These findings establish the involvement of SIRT6 in the inflammatory pathways of diabetic atherosclerotic lesions and suggest its possible positive modulation by incretin, the effect of which is associated with morphological and compositional characteristics of a potential stable plaque phenotype.

    Topics: Aged; Carotid Arteries; Collagen; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Endarterectomy, Carotid; Female; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Inflammation; Male; Middle Aged; Oxidative Stress; Plaque, Atherosclerotic; Receptors, Glucagon; Sirtuins

2015
Gut microbiota and energy balance: role in obesity.
    The Proceedings of the Nutrition Society, 2015, Volume: 74, Issue:3

    The microbial community populating the human digestive tract has been linked to the development of obesity, diabetes and liver diseases. Proposed mechanisms on how the gut microbiota could contribute to obesity and metabolic diseases include: (1) improved energy extraction from diet by the conversion of dietary fibre to SCFA; (2) increased intestinal permeability for bacterial lipopolysaccharides (LPS) in response to the consumption of high-fat diets resulting in an elevated systemic LPS level and low-grade inflammation. Animal studies indicate differences in the physiologic effects of fermentable and non-fermentable dietary fibres as well as differences in long- and short-term effects of fermentable dietary fibre. The human intestinal microbiome is enriched in genes involved in the degradation of indigestible polysaccharides. The extent to which dietary fibres are fermented and in which molar ratio SCFA are formed depends on their physicochemical properties and on the individual microbiome. Acetate and propionate play an important role in lipid and glucose metabolism. Acetate serves as a substrate for de novo lipogenesis in liver, whereas propionate can be utilised for gluconeogenesis. The conversion of fermentable dietary fibre to SCFA provides additional energy to the host which could promote obesity. However, epidemiologic studies indicate that diets rich in fibre rather prevent than promote obesity development. This may be due to the fact that SCFA are also ligands of free fatty acid receptors (FFAR). Activation of FFAR leads to an increased expression and secretion of enteroendocrine hormones such as glucagon-like-peptide 1 or peptide YY which cause satiety. In conclusion, the role of SCFA in host energy balance needs to be re-evaluated.

    Topics: Animals; Dietary Fiber; Energy Metabolism; Fatty Acids, Volatile; Gastrointestinal Microbiome; Glucagon-Like Peptide 1; Glucose; Humans; Incretins; Inflammation; Intestinal Mucosa; Intestines; Lipid Metabolism; Lipopolysaccharides; Obesity; Peptide YY; Permeability; Satiation

2015
Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells.
    Endocrine, 2015, Volume: 50, Issue:3

    Diabetes mellitus is a heterogeneous, multifactorial, chronic disease characterized by hyperglycemia owing to insulin insufficiency and insulin resistance (IR). Recent epidemiological studies showed that the diabetes epidemic affects 382 million people worldwide in 2013, and this figure is expected to be 600 million people by 2035. Diabetes is associated with microvascular and macrovascular complications resulting in accelerated endothelial dysfunction (ED), atherosclerosis, and cardiovascular disease (CVD). Unfortunately, the complex pathophysiology of diabetic cardiovascular damage is not fully understood. Therefore, there is a clear need to better understand the molecular pathophysiology of ED in diabetes, and consequently, better treatment options and novel efficacious therapies could be identified. In the light of recent extensive research, we re-investigate the association between diabetes-associated metabolic disturbances (IR, subclinical inflammation, dyslipidemia, hyperglycemia, dysregulated production of adipokines, defective incretin and gut hormones production/action, and oxidative stress) and ED, focusing on oxidative stress and endothelial progenitor cells (EPCs). In addition, we re-emphasize that oxidative stress is the final common pathway that transduces signals from other conditions-either directly or indirectly-leading to ED and CVD.

    Topics: Adipokines; Animals; Diabetes Mellitus; Dyslipidemias; Endothelial Progenitor Cells; Endothelium, Vascular; Ghrelin; Humans; Hyperglycemia; Incretins; Inflammation; Insulin Resistance; Oxidative Stress

2015
GLP-1 Receptor Agonist Exenatide Attenuates the Detrimental Effects of Obesity on Inflammatory Profile in Testis and Sperm Quality in Mice.
    American journal of reproductive immunology (New York, N.Y. : 1989), 2015, Volume: 74, Issue:5

    Male obesity has been linked to subfecundity. This study is to investigate the effects of GLP-1 receptor (GLP-1R) agonist exenatide on sperm quality in high-fat diet (HFD)-induced obese mice.. After 12 weeks of chow diet (CD) or HFD challenge, mice on HFD were allocated to either saline or exenatide (24 nmol/kg/day) interventions for 8 weeks. Sperm quality and the inflammatory profile of testis were compared among three groups.. Obesity reduced the quality of sperm and changed the inflammatory profile characterized by increased mRNA expression levels of TNF-α, MCP-1, and F4/80 in testis. Exenatide intervention reduced the expression of pro-inflammatory cytokines and improved the quality of sperm.. HFD-induced obesity leads to the impairment of sperm quality and increased inflammation of testis in mice, and the abnormal physiology can be attenuated by exenatide treatment. Exenatide treatment may bring additional profits to obese and diabetes men by improving sperm function.

    Topics: Animals; Cytokines; Diet, High-Fat; Exenatide; Glucagon-Like Peptide-1 Receptor; Incretins; Inflammation; Male; Mice; Obesity; Peptides; Spermatozoa; Testis; Venoms

2015
Glucagon-like peptide-1 (GLP-1) analog liraglutide inhibits endothelial cell inflammation through a calcium and AMPK dependent mechanism.
    PloS one, 2014, Volume: 9, Issue:5

    Liraglutide is a glucagon-like peptide-1 (GLP-1) mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascular disease in diabetic patients. The mechanism responsible for this effect has yet to be determined; however, one possibility is that they might do so by a direct effect on vascular endothelium. Since low grade inflammation of the endothelium is an early event in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), we determined the effects of liraglutide on inflammation in cultured human aortic endothelial cells (HAECs). Liraglutide reduced the inflammatory responses to TNFα and LPS stimulation, as evidenced by both reduced protein expression of the adhesion molecules VCAM-1 and E-Selectin, and THP-1 monocyte adhesion. This was found to result from increased cell Ca2+ and several molecules sensitive to Ca2+ with known anti inflammatory actions in endothelial cells, including CaMKKβ, CaMKI, AMPK, eNOS and CREB. Treatment of the cells with STO-609, a CaMKK inhibitor, diminished both the activation of AMPK, CaMKI and the inhibition of TNFα and LPS-induced monocyte adhesion by liraglutide. Likewise, expression of an shRNA against AMPK nullified the anti-inflammatory effects of liraglutide. The results indicate that liraglutide exerts a strong anti-inflammatory effect on HAECs. They also demonstrate that this is due to its ability to increase intracellular Ca2+ and activate CAMKKβ, which in turn activates AMPK.

    Topics: AMP-Activated Protein Kinases; Analysis of Variance; Benzimidazoles; Blotting, Western; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Kinase; Cells, Cultured; Endothelial Cells; Endothelium, Vascular; Glucagon-Like Peptide 1; Humans; Immunoenzyme Techniques; Incretins; Inflammation; Liraglutide; Naphthalimides; RNA Interference; RNA, Small Interfering

2014
Glucagon-like peptide-1 (GLP-1) reduces mortality and improves lung function in a model of experimental obstructive lung disease in female mice.
    Endocrinology, 2013, Volume: 154, Issue:12

    The incretin hormone glucagon-like peptide-1 (GLP-1) is an important insulin secretagogue and GLP-1 analogs are used for the treatment of type 2 diabetes. GLP-1 displays antiinflammatory and surfactant-releasing effects. Thus, we hypothesize that treatment with GLP-1 analogs will improve pulmonary function in a mouse model of obstructive lung disease. Female mice were sensitized with injected ovalbumin and treated with GLP-1 receptor (GLP-1R) agonists. Exacerbation was induced with inhalations of ovalbumin and lipopolysaccharide. Lung function was evaluated with a measurement of enhanced pause in a whole-body plethysmograph. mRNA levels of GLP-1R, surfactants (SFTPs), and a number of inflammatory markers were measured. GLP-1R was highly expressed in lung tissue. Mice treated with GLP-1R agonists had a noticeably better clinical appearance than the control group. Enhanced pause increased dramatically at day 17 in all control mice, but the increase was significantly less in the groups of GLP-1R agonist-treated mice (P < .001). Survival proportions were significantly increased in GLP-1R agonist-treated mice (P < .01). SFTPB and SFTPA were down-regulated and the expression of inflammatory cytokines were increased in mice with obstructive lung disease, but levels were largely unaffected by GLP-1R agonist treatment. These results show that GLP-1R agonists have potential therapeutic potential in the treatment of obstructive pulmonary diseases, such as chronic obstructive pulmonary disease, by decreasing the severity of acute exacerbations. The mechanism of action does not seem to be the modulation of inflammation and SFTP expression.

    Topics: Animals; Biomarkers; Exenatide; Female; Gene Expression Regulation; Glucagon-Like Peptide 1; Glucagon-Like Peptide-1 Receptor; Humans; Incretins; Inflammation; Liraglutide; Lung Diseases, Obstructive; Mice; Mice, Inbred C57BL; Ovalbumin; Peptides; Receptors, Glucagon; RNA, Messenger; Venoms

2013
Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe⁻/⁻ mice.
    Atherosclerosis, 2013, Volume: 231, Issue:2

    [corrected] Glucagon-like peptide-1 (GLP-1) based therapies are new treatment options for patients with type 2 diabetes. Recent reports suggest vasoprotective actions of GLP-1. Similar beneficial effects might be reached by GLP-1(9-37) and the c-terminal GLP-1 split product (28-37) although both peptides do not activate the GLP-1 receptor. We therefore investigated the actions of GLP-1(7-37), GLP-1(9-37) as well as GLP-1(28-37) on vascular lesion formation in a mouse model of atherosclerosis.. GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) and LacZ (control) were overexpressed for a period of 12 weeks in apoe(-/-) mice on high-fat diet (n = 10/group) using an adeno-associated viral vector system. Neither of the constructs changed overall lesion size. However, GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) significantly reduced plaque macrophage infiltration (GLP-1(7-37): 40.6%, GLP-1(9-37): 47.0%, GLP-1(28-37): 40.1% decrease, p < 0.05) and plaque MMP-9 expression (GLP-1(7-37): 41.6%, GLP-1(9-37): 50.2%, GLP-1(28-37): 44.0% decrease, p < 0.05) compared to LacZ in the aortic arch. Moreover, all GLP-1 constructs increased plaque collagen content (GLP-1(7-37): 49.3%, GLP-1(9-37): 86.0%, GLP-1(28-37): 81.9% increase, p < 0.05) and increased fibrous cap thickness (GLP-1(7-37): 188.0%, GLP-1(9-37): 179.9% GLP-1(28-37): 111.0% increase, p < 0.05). These effects of GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) on plaque macrophage infiltration, MMP-9 expression and plaque collagen content were confirmed in the aortic root.. GLP-1(7-37), GLP-1(9-37) and GLP-1(28-37) reduce plaque inflammation and increase phenotypic characteristics of plaque stability in a murine model of atherosclerosis. Future studies are needed to determine whether these effects translate into improved plaque stability and less cardiovascular events in high-risk patients with type 2 diabetes.

    Topics: Animals; Apolipoproteins E; Atherosclerosis; Blood Glucose; Collagen; Diet, High-Fat; Disease Models, Animal; Gene Expression Regulation; Glucagon-Like Peptide 1; Incretins; Inflammation; Lipids; Macrophages; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Peptide Fragments; Phenotype; Plaque, Atherosclerotic; Transgenes

2013
Continuous parenteral and enteral nutrition induces metabolic dysfunction in neonatal pigs.
    JPEN. Journal of parenteral and enteral nutrition, 2012, Volume: 36, Issue:5

    We previously showed that parenteral nutrition (PN) compared with formula feeding results in hepatic insulin resistance and steatosis in neonatal pigs. The current aim was to test whether the route of feeding (intravenous [IV] vs enteral) rather than other feeding modalities (diet, pattern) had contributed to the outcome.. Neonatal pigs were fed enterally or parenterally for 14 days with 1 of 4 feeding modalities as follows: (1) enteral polymeric formula intermittently (FORM), (2) enteral elemental diet (ED) intermittently (IEN), (3) enteral ED continuously (CEN), and (4) parenteral ED continuously (PN). Subgroups of pigs underwent IV glucose tolerance tests (IVGTT) and hyperinsulinemic-euglycemic clamps (CLAMP). Following CLAMP, pigs were euthanized and tissues collected for further analysis.. Insulin secretion during IVGTT was significantly higher and glucose infusion rates during CLAMP were lower in CEN and PN than in FORM and IEN. Endogenous glucose production rate was suppressed to zero in all groups during CLAMP. In the fed state, plasma glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide (GLP)-1, and GLP-2 were different between feeding modalities. Insulin receptor phosphorylation in liver and muscle was decreased in IEN, CEN, and PN compared with FORM. Liver weight was highest in PN. Steatosis and myeloperoxidase (MPO) activity tended to be highest in PN and CEN. Enterally fed groups had higher plasma GLP-2 and jejunum weight compared with PN.. PN and enteral nutrition (EN) when given continuously as an elemental diet reduces insulin sensitivity and the secretion of key gut incretins. The intermittent vs continuous pattern of EN produced the optimal effect on metabolic function.

    Topics: Administration, Intravenous; Animals; Animals, Newborn; Blood Glucose; Endpoint Determination; Enteral Nutrition; Fatty Liver; Female; Food, Formulated; Glucagon-Like Peptide 1; Glucagon-Like Peptide 2; Incretins; Inflammation; Insulin; Insulin Resistance; Insulin Secretion; Intestine, Small; Liver; Metabolic Diseases; Nonlinear Dynamics; Organ Size; Parenteral Nutrition; Swine

2012