imetelstat has been researched along with Colorectal-Neoplasms* in 4 studies
2 review(s) available for imetelstat and Colorectal-Neoplasms
Article | Year |
---|---|
The role of antiangiogenic agents in the treatment of patients with advanced colorectal cancer according to K-RAS status.
Colorectal cancer (CRC) is the fourth most commonly diagnosed cancer worldwide. Recently, it has been found that about 40 % of patients with CRC have mutations in the K-RAS gene. Several clinical trials have showed that patients with metastatic colorectal cancer (mCRC) who present tumour-promoting mutations in signalling pathways involving the epidermal growth factor receptor (EGFR), which includes activating K-RAS mutations, do not respond to anti-EGFR drugs such as panitumumab and cetuximab. Hence, K-RAS status is now considered an important negative predictive factor for response to anti-EGFR drugs. Moreover, K-RAS status seems to have also a prognostic role in CRC, but this fact is somewhat controversial. Activity of antiangiogenic agents seems not to be influenced by K-RAS gene status. Tumour angiogenesis has attracted interest in attempts to improve the management of mCRC. The vascular endothelial growth factor (VEGF) pathway is fundamental to the regulation of angiogenesis, and research has focused on developing agents that selectively target it. In this way, the anti-VEGF antibody bevacizumab in combination with chemotherapy has provided important clinical benefits in terms of response rate, progression-free survival and overall survival to patients with mCRC. Efficacy data of bevacizumab in K-RAS wild-type patients seem to be comparable with the efficacy data observed with anti-EGFR therapies in a cross-trial comparison. Although there is a lack of prospective and randomized data in this setting, the combination of chemotherapy plus antiangiogenic agents could be considered as an effective alternative for the treatment of mCRC with independence of K-RAS gene status. Here, we review the available data we have in the literature of the use of antiangiogenic strategies in the treatment of mCRC nowadays. Topics: Angiogenesis Inhibitors; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; Axitinib; Bevacizumab; Camptothecin; Capecitabine; Colorectal Neoplasms; Deoxycytidine; ErbB Receptors; Fluorouracil; Genes, ras; Humans; Imidazoles; Indazoles; Indoles; Irinotecan; Niacinamide; Oligonucleotides; Organoplatinum Compounds; Oxaliplatin; Pharmacogenetics; Phenylurea Compounds; Prognosis; Protein-Tyrosine Kinases; Pyridines; Pyrroles; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Recombinant Fusion Proteins; Signal Transduction; Sorafenib; Sunitinib; Vascular Endothelial Growth Factor A | 2014 |
[Nintedanib (BIBF 1120) in the treatment of solid cancers: an overview of biological and clinical aspects].
Angiogenesis is essential for tumor growth and metastasis. The main regulators of the process are the signaling cascades of VEGF-, PDGF- and FGF receptors. Inhibition of these pathways holds potential therapeutic benefit not only for cancer patients, but also for the treatment of other diseases. This paper summarizes the experimental and clinical results of studies available so far on the multi-target tyrosine kinase inhibitor nintedanib (BIBF 1120). According to these studies, nintedanib effectively inhibits VEGFR-, PDGFR- and FGFR signalization and thus the proliferation and survival of cell types which highly express these receptors (i.e. endothelial and smooth muscle cells and pericytes). In vitro studies and in vivo xenograft experiments have provided promising results. In the clinical setting, BIBF 1120 seems to be effective and well tolerated in various tumor types, such as lung, prostate, colorectal and hepatocellular carcinoma, as well as in gynecological tumors. The main adverse events are gastrointestinal toxicities and the reversible elevation of liver enzyme levels. Nintedanib might also be combined with paclitaxel, carboplatin, pemetrexed and docetaxel. There are several ongoing clinical trials testing the efficacy of BIBF 1120. Topics: Animals; Antineoplastic Agents; Axitinib; Benzenesulfonates; Carcinoma, Hepatocellular; Clinical Trials as Topic; Colorectal Neoplasms; Digestive System; Enzyme Inhibitors; Female; Genital Neoplasms, Female; Humans; Imidazoles; Indazoles; Indoles; Liver Neoplasms; Lung Neoplasms; Male; Neoplasms; Niacinamide; Oligonucleotides; Phenylurea Compounds; Phthalazines; Piperidines; Prostatic Neoplasms; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Quinazolines; Receptors, Fibroblast Growth Factor; Receptors, Platelet-Derived Growth Factor; Receptors, Vascular Endothelial Growth Factor; Signal Transduction; Sorafenib; Sulfonamides; Xenograft Model Antitumor Assays | 2012 |
1 trial(s) available for imetelstat and Colorectal-Neoplasms
Article | Year |
---|---|
Motesanib with or without panitumumab plus FOLFIRI or FOLFOX for the treatment of metastatic colorectal cancer.
This study assessed the safety, efficacy, and pharmacokinetics of motesanib, a multitargeted small molecule angiogenesis inhibitor, with and without panitumumab, in combination with FOLFIRI or FOLFOX in patients with metastatic colorectal cancer (mCRC).. This open-label, phase 1b, two-part, multicenter study in patients with mCRC and ≤1 prior treatment evaluated escalating doses (50, 75, 100, or 125 mg QD, 75 mg BID) of motesanib with panitumumab and chemotherapy (Part 1) and the target dose of motesanib with chemotherapy (Part 2).. At 17 sites in the USA and Australia, 119 patients were enrolled between December 2004 and February 2010. In Part 1 [motesanib plus panitumumab/FOLFIRI (n = 36) or plus panitumumab/FOLFOX (n = 17)], all motesanib doses tested were tolerated and 125 mg QD was deemed the target dose. Following toxicity results for combination therapy in other trials, panitumumab was withdrawn from the study. Part 2 evaluated motesanib 125 mg with chemotherapy [FOLFIRI (n = 37); FOLFOX (n = 29)]. The primary endpoint, objective response rate in patients with measurable disease by RECIST, was 20 % overall and was higher among patients receiving first-line (27 % overall; FOLFOX, 24 %; FOLFIRI, 27 %) compared with second-line therapy (14 % overall; FOLFOX, 0 %; FOLFIRI, 20 %). The most common adverse events were diarrhea, nausea, fatigue, and hypertension. We observed a low rate of cholecystitis [3 of 119 (2.5 %)], a known adverse event of motesanib and other small molecule VEGF inhibitors.. Motesanib 125 mg QD in combination with FOLFIRI or FOLFOX chemotherapy was tolerated and demonstrated modest efficacy in first-/second-line mCRC. Topics: Adult; Aged; Aged, 80 and over; Antibodies, Monoclonal; Antineoplastic Combined Chemotherapy Protocols; Camptothecin; Colorectal Neoplasms; Dose-Response Relationship, Drug; Drug Administration Schedule; Female; Fluorouracil; Humans; Indoles; Leucovorin; Male; Middle Aged; Niacinamide; Oligonucleotides; Organoplatinum Compounds; Panitumumab; Young Adult | 2015 |
1 other study(ies) available for imetelstat and Colorectal-Neoplasms
Article | Year |
---|---|
Effects of a Multikinase Inhibitor Motesanib (AMG 706) Alone and Combined with the Selective DuP-697 COX-2 Inhibitor on Colorectal Cancer Cells.
In the present study, we investigated the effects of motesanib (AMG 706), a multikinase inhibitor alone and in combination with DuP-697, an irreversible selective inhibitor of COX-2, on cell proliferation, angiogenesis, and apoptosis induction in a human colorectal cancer cell line (HT29). Real time cell analysis (RTCA, Xcelligence system) was used to determine the effects on colorectal cancer cell proliferation. Apoptosis was assessed with annexin V staining and angiogenesis was determined with chorioallantoic membrane model. We found that motesanib alone exerted antiproliferative, antiangiogenic and apoptotic effects on HT29 colorectal cancer cells. Combination with DUP-697 increased the antiproliferative, antiangiogenic and apoptotic effects. Results of this study indicate that motesanib may be a good choice in treatment of colorectal tumors. In addition, the increased effects of combination of motesanib with DuP-697 raise the possibility of using lower doses of these drugs and therefore avoid/minimize the dose-dependent side effects generally observed. Topics: Angiogenesis Inhibitors; Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Cell Line, Tumor; Cell Proliferation; Chickens; Chorioallantoic Membrane; Colorectal Neoplasms; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; HT29 Cells; Humans; Indoles; Neovascularization, Pathologic; Niacinamide; Oligonucleotides; Protein Kinase Inhibitors; Thiophenes | 2016 |