imd-0354 and Insulin-Resistance

imd-0354 has been researched along with Insulin-Resistance* in 2 studies

Other Studies

2 other study(ies) available for imd-0354 and Insulin-Resistance

ArticleYear
Central IKKβ inhibition prevents air pollution mediated peripheral inflammation and exaggeration of type II diabetes.
    Particle and fibre toxicology, 2014, Oct-30, Volume: 11

    Prior experimental and epidemiologic data support a link between exposure to fine ambient particulate matter (<2.5 μm in aerodynamic diameter, PM2.5) and development of insulin resistance/Type II diabetes mellitus (Type II DM). We investigated the role of hypothalamic inflammation in PM2.5-mediated diabetes development.. KKay mice, a genetically susceptible model of Type II DM, were assigned to either concentrated PM2.5 or filtered air (FA) for 4-8 weeks via a versatile aerosol concentrator and exposure system, or administered intra-cerebroventricular with either IKKβ inhibitor (IMD-0354) or TNFα antibody (infliximab) for 4-5 weeks simultaneously with PM2.5 exposure. Glucose tolerance, insulin sensitivity, oxygen consumption and heat production were evaluated. At euthanasia, blood, spleen, visceral adipose tissue and hypothalamus were collected to measure inflammatory cells using flow cytometry. Standard immunohistochemical methods and quantitative PCR were used to assess targets of interest.. PM2.5 exposure led to hyperglycemia and insulin resistance, which was accompanied by increased hypothalamic IL-6, TNFα, and IKKβ mRNA expression and microglial/astrocyte reactivity. Targeting the NFκB pathway with intra-cerebroventricular administration of an IKKβ inhibitor [IMD-0354, n = 8 for each group)], but not TNFα blockade with infliximab [(n = 6 for each group], improved glucose tolerance, insulin sensitivity, rectified energy homeostasis (O2 consumption, CO2 production, respiratory exchange ratio and heat generation) and reduced peripheral inflammation in response to PM2.5.. Central inhibition of IKKβ prevents PM2.5 mediated peripheral inflammation and exaggeration of type II diabetes. These results provide novel insights into how air pollution may mediate susceptibility to insulin resistance and Type II DM.

    Topics: Animals; Anti-Inflammatory Agents; Antibodies, Monoclonal; Benzamides; Blood Glucose; Diabetes Mellitus, Type 2; Disease Models, Animal; Energy Metabolism; Hypothalamus; I-kappa B Kinase; Inflammation; Infliximab; Inhalation Exposure; Injections, Intraventricular; Insulin; Insulin Resistance; Interleukin-6; Mice; Oxygen Consumption; Particulate Matter; Protein Kinase Inhibitors; Risk Assessment; RNA, Messenger; Thermogenesis; Time Factors; Tumor Necrosis Factor-alpha

2014
A novel IKKbeta inhibitor stimulates adiponectin levels and ameliorates obesity-linked insulin resistance.
    Biochemical and biophysical research communications, 2004, Oct-08, Volume: 323, Issue:1

    Adiponectin is an anti-diabetic and anti-atherogenic hormone that is exclusively secreted from fat cells. Serum adiponectin levels are reduced in obese patients and obese model mice, despite increased adipose tissue mass. Elucidation of the mechanism(s) by which plasma adiponectin levels are decreased in obese and diabetic patients would provide insight into the cause of obesity-induced diabetes and the development of therapeutic advances. In the present study, the regulation of adiponectin secretion was investigated using 3T3-L1 adipocytes and a diabetic-/obese-mouse model. A novel insulin sensitizer, IkappaB kinase beta (IKKbeta) inhibitor, ameliorated insulin resistance and up-regulated plasma levels of adiponectin without producing a significant change in body weight in KKAy mice that were fed a high-fat diet. The IKKbeta inhibitor cancelled the TNFalpha-mediated down-regulation of adiponectin secretion and simultaneously up-regulated the phosphorylation of Akt in 3T3-L1 adipocytes. Using dominant-negative mutants of Akt or PKClambda (downstream effectors of phosphoinositide 3-kinase), insulin-stimulated Akt activity was found to be important in the regulation of adiponectin secretion by insulin in 3T3-L1 adipocytes. These observations suggest that "insulin-stimulated Akt activity in adipocytes" may play an important role in the regulation of adiponectin secretion.

    Topics: 3T3-L1 Cells; Adipocytes; Adiponectin; Animals; Benzamides; Blood Glucose; Body Weight; Chromones; Diabetes Mellitus; Disease Models, Animal; Dose-Response Relationship, Drug; Down-Regulation; Enzyme Inhibitors; Gene Expression Regulation; Genes, Dominant; Glucose; I-kappa B Kinase; Insulin; Insulin Resistance; Intercellular Signaling Peptides and Proteins; Leptin; Mice; Mice, Obese; Models, Biological; Morpholines; Obesity; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Time Factors; Up-Regulation

2004