idelalisib has been researched along with Disease-Models--Animal* in 6 studies
6 other study(ies) available for idelalisib and Disease-Models--Animal
Article | Year |
---|---|
Protective effect of Idelalisib on carbon tetrachloride-induced liver fibrosis via microRNA-124-3P/phosphatidylinositol-3-hydroxykinase signalling pathway.
Topics: Animals; Apoptosis; Biomarkers; Biopsy; Carbon Tetrachloride; Disease Models, Animal; Disease Susceptibility; Extracellular Matrix; Forkhead Box Protein O3; Gene Expression Regulation; Hepatic Stellate Cells; Immunohistochemistry; Liver Cirrhosis; Male; Mice; MicroRNAs; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Purines; Quinazolinones; Signal Transduction | 2021 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Piperidinyl-embeded chalcones possessing anti PI3Kδ inhibitory properties exhibit anti-atopic properties in preclinical models.
Phosphatidylinositide 3-kinases (PI3Ks) are widely expressed enzymes involved in membrane signalization pathways. Attempts to administer inhibitors with broad activity against different isoforms have failed due to toxicity. Conversely the PI3Kδ isoform is much more selectively expressed, enabling therapeutic targeting of this isoform. Of particular interest PI3Kδ is expressed in human basophils and its inhibition has been shown to reduce anti-IgE induced basophil degranulation, suggesting that PI3Kδ inhibitors could be useful as anti-allergy drugs. Herein, we report for the first time the activity of compounds derived from chalcone scaffolds as inhibitors of normal human basophil degranulation and identified the most active compound with anti-PI3Kδ properties that was investigated in preclinical models. Compound 18, namely 1-[2-hydroxy-4,6-dimethoxy-3-(N-methylpiperidin-4-yl)phenyl]-3-(2,4,6-trimethoxyphenyl)-prop-2-en-1-one, was found to inhibit normal human basophil degranulation in a dose-dependent manner. In a murine model of ovalbumin-induced asthma, compound 18 was shown to reduce expiratory pressure while its impact on the inflammatory infiltrate in alveolar lavage and total lung was dependent on the route of administration. In a DNFB-induced model of atopic dermatitis compound 18 administered systemically proved to be as potent as topical betamethasone. These results support the anti-atopic and allergic properties of the title compound and warrant further clinical development. Topics: Animals; Asthma; Basophils; Cell Degranulation; Chalcones; Dermatitis, Atopic; Disease Models, Animal; Drug Evaluation, Preclinical; Humans; Mice; Models, Molecular; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Piperidines; Protein Kinase Inhibitors | 2018 |
Phosphoinositide 3-kinase δ inhibition promotes antitumor responses but antagonizes checkpoint inhibitors.
Multiple modes of immunosuppression restrain immune function within tumors. We previously reported that phosphoinositide 3-kinase δ (PI3Kδ) inactivation in mice confers resistance to a range of tumor models by disrupting immunosuppression mediated by regulatory T cells (Tregs). The PI3Kδ inhibitor idelalisib has proven highly effective in the clinical treatment of chronic lymphocytic leukemia and the potential to extend the use of PI3Kδ inhibitors to nonhematological cancers is being evaluated. In this work, we demonstrate that the antitumor effect of PI3Kδ inactivation is primarily mediated through the disruption of Treg function, and correlates with tumor dependence on Treg immunosuppression. Compared with Treg-specific PI3Kδ deletion, systemic PI3Kδ inactivation is less effective at conferring resistance to tumors. We show that PI3Kδ deficiency impairs the maturation and reduces the capacity of CD8+ cytotoxic T lymphocytes (CTLs) to kill tumor cells in vitro, and to respond to tumor antigen-specific immunization in vivo. PI3Kδ inactivation antagonized the antitumor effects of tumor vaccines and checkpoint blockade therapies intended to boost the CD8+ T cell response. These findings provide insights into mechanisms by which PI3Kδ inhibition promotes antitumor immunity and demonstrate that the mechanism is distinct from that mediated by immune checkpoint blockade. Topics: Animals; Antigens, Neoplasm; Antineoplastic Agents, Immunological; Antineoplastic Combined Chemotherapy Protocols; Cancer Vaccines; Cell Line, Tumor; Class I Phosphatidylinositol 3-Kinases; Costimulatory and Inhibitory T-Cell Receptors; Diphtheria Toxin; Disease Models, Animal; Drug Interactions; Female; Humans; Lymphocyte Depletion; Male; Mice; Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Purines; Quinazolinones; Signal Transduction; T-Lymphocytes, Cytotoxic; T-Lymphocytes, Regulatory; Treatment Outcome | 2018 |
Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy.
Redundancy and compensation provide robustness to biological systems but may contribute to therapy resistance. Both tumor-associated macrophages (TAMs) and Foxp3+ regulatory T (Treg) cells promote tumor progression by limiting antitumor immunity. Here we show that genetic ablation of CSF1 in colorectal cancer cells reduces the influx of immunosuppressive CSF1R+ TAMs within tumors. This reduction in CSF1-dependent TAMs resulted in increased CD8+ T cell attack on tumors, but its effect on tumor growth was limited by a compensatory increase in Foxp3+ Treg cells. Similarly, disruption of Treg cell activity through their experimental ablation produced moderate effects on tumor growth and was associated with elevated numbers of CSF1R+ TAMs. Importantly, codepletion of CSF1R+ TAMs and Foxp3+ Treg cells resulted in an increased influx of CD8+ T cells, augmentation of their function, and a synergistic reduction in tumor growth. Further, inhibition of Treg cell activity either through systemic pharmacological blockade of PI3Kδ, or its genetic inactivation within Foxp3+ Treg cells, sensitized previously unresponsive solid tumors to CSF1R+ TAM depletion and enhanced the effect of CSF1R blockade. These findings identify CSF1R+ TAMs and PI3Kδ-driven Foxp3+ Treg cells as the dominant compensatory cellular components of the immunosuppressive tumor microenvironment, with implications for the design of combinatorial immunotherapies. Topics: Aminopyridines; Animals; Cell Line, Tumor; Class I Phosphatidylinositol 3-Kinases; Diphtheria Toxin; Disease Models, Animal; Drug Resistance, Neoplasm; Female; Forkhead Transcription Factors; Gene Knockout Techniques; Humans; Lymphocyte Depletion; Macrophages; Male; Mice; Mice, Transgenic; Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Primary Cell Culture; Purines; Pyrroles; Quinazolinones; Receptors, Granulocyte-Macrophage Colony-Stimulating Factor; T-Lymphocytes, Regulatory; Tumor Microenvironment | 2018 |
Idelalisib Impacts Cell Growth through Inhibiting Translation-Regulatory Mechanisms in Mantle Cell Lymphoma.
PI3K is a critical node in the B-cell receptor pathway, which is responsible for survival and proliferation of B-cell malignancies. Idelalisib, a PI3Kδ-isoform-specific inhibitor, has been approved to treat B-cell malignancies. Although biological activity of the drug has been evaluated, molecular mechanisms and signaling pathway disruption leading to the biological effects of idelalisib are not yet well defined. Prior laboratory reports have identified transcription and translation as the primary events for attenuation of PI3Kα isoform. We hypothesized that PI3Kδ-isoform inhibition by idelalisib should also affect gene transcription and protein translation.. Using three mantle cell lymphoma cell lines and primary cells from patients, biological consequences such as apoptosis/cell-cycle analysis, as well as RNA/protein synthesis were evaluated. Proteomics analyses (RPPA and immunoblot assays) defined molecular events downstream of PI3K/AKT cassette.. Idelalisib treatment resulted in inhibition of protein synthesis, which correlated with reduction in cell size and cell growth. A moderate loss of viability without any change in cell-cycle profile was observed. Idelalisib treatment inhibited AKT activation, an immediate downstream PI3K effector, and also reduced phosphorylation levels of downstream AKT/mTOR pathway proteins such as PRAS40. In addition, idelalisib treatment impeded activation of the MAPK pathway, and MEK, ERK and p90RSK phosphorylation levels were reduced. Reduction in AKT, PDK1, and MEK phosphorylation correlated with protein synthesis inhibition.. Collectively, these results clarify the molecular mechanisms of actions and may provide biomarkers and targets for combination with idelalisib in B-cell malignancies. Clin Cancer Res; 23(1); 181-92. ©2016 AACR. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Gene Expression Regulation, Neoplastic; Humans; Lymphoma, Mantle-Cell; MAP Kinase Signaling System; Mice; Models, Biological; Phosphatidylinositol 3-Kinases; Protein Biosynthesis; Proteomics; Proto-Oncogene Proteins c-akt; Purines; Quinazolinones; Signal Transduction; Xenograft Model Antitumor Assays | 2017 |