icg-001 has been researched along with Pulmonary-Fibrosis* in 4 studies
4 other study(ies) available for icg-001 and Pulmonary-Fibrosis
Article | Year |
---|---|
Inhibition of Wnt/β-catenin signaling suppresses myofibroblast differentiation of lung resident mesenchymal stem cells and pulmonary fibrosis.
An emerging paradigm proposes a crucial role for lung resident mesenchymal stem cells (LR-MSCs) via a fibroblastic transdifferentiation event in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Aberrant activation of Wnt/β-catenin signaling occurs in virtually all fibrotic lung diseases and is relevant to the differentiation of mesenchymal stem cells (MSCs). In vitro, by measuring the protein levels of several key components involved in Wnt/β-catenin signaling, we confirmed that this signaling pathway was activated in the myofibroblast differentiation of LR-MSCs. Targeted inhibition of Wnt/β-catenin signaling by a small molecule, ICG-001, dose-dependently impeded the proliferation and transforming growth factor-β1 (TGF-β1)-mediated fibrogenic actions of LR-MSCs. In vivo, ICG-001 exerted its lung protective effects after bleomycin treatment through blocking mesenchymal-myofibroblast transition, repressing matrix gene expression, and reducing cell apoptosis. Moreover, delayed administration of ICG-001 attenuated bleomycin-induced lung fibrosis, which may present a promising therapeutic strategy for intervention of IPF. Interestingly, these antifibrotic actions of ICG-001 are operated by a mechanism independent of any disruption of Smad activation. In conclusion, our study demonstrated that Wnt/β-catenin signaling may be an essential mechanism underlying the regulation of myofibroblast differentiation of LR-MSCs and their further participation in the development of pulmonary fibrosis. Topics: 5'-Nucleotidase; Animals; Antigens, Ly; Apoptosis; Bleomycin; Bridged Bicyclo Compounds, Heterocyclic; Cell Differentiation; Gene Expression Regulation; Humans; Integrin beta1; Lung; Membrane Proteins; Mesenchymal Stem Cells; Mice; Myofibroblasts; Pulmonary Fibrosis; Pyrimidinones; Single-Cell Analysis; Smad Proteins; Wnt Proteins; Wnt Signaling Pathway | 2018 |
Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP).
Interactions between transforming growth factor-β (TGF-β) and Wnt are crucial to many biological processes, although specific targets, rationale for divergent outcomes (differentiation versus block of epithelial proliferation versus epithelial-mesenchymal transition (EMT)) and precise mechanisms in many cases remain unknown. We investigated β-catenin-dependent and transforming growth factor-β1 (TGF-β1) interactions in pulmonary alveolar epithelial cells (AEC) in the context of EMT and pulmonary fibrosis. We previously demonstrated that ICG-001, a small molecule specific inhibitor of the β-catenin/CBP (but not β-catenin/p300) interaction, ameliorates and reverses pulmonary fibrosis and inhibits TGF-β1-mediated α-smooth muscle actin (α-SMA) and collagen induction in AEC. We now demonstrate that TGF-β1 induces LEF/TCF TOPFLASH reporter activation and nuclear β-catenin accumulation, while LiCl augments TGF-β-induced α-SMA expression, further confirming co-operation between β-catenin- and TGF-β-dependent signaling pathways. Inhibition and knockdown of Smad3, knockdown of β-catenin and overexpression of ICAT abrogated effects of TGF-β1 on α-SMA transcription/expression, indicating a requirement for β-catenin in these Smad3-dependent effects. Following TGF-β treatment, co-immunoprecipitation demonstrated direct interaction between endogenous Smad3 and β-catenin, while chromatin immunoprecipitation (ChIP)-re-ChIP identified spatial and temporal regulation of α-SMA via complex formation among Smad3, β-catenin, and CBP. ICG-001 inhibited α-SMA expression/transcription in response to TGF-β as well as α-SMA promoter occupancy by β-catenin and CBP, demonstrating a previously unknown requisite TGF-β1/β-catenin/CBP-mediated pro-EMT signaling pathway. Clinical relevance was shown by β-catenin/Smad3 co-localization and CBP expression in AEC of IPF patients. These findings suggest a new therapeutic approach to pulmonary fibrosis by specifically uncoupling CBP/catenin-dependent signaling downstream of TGF-β. Topics: Actins; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Cell Line; Cell Proliferation; CREB-Binding Protein; Epithelial Cells; Epithelial-Mesenchymal Transition; Gene Expression Regulation; Humans; Pulmonary Fibrosis; Pyrimidinones; Signal Transduction; Smad3 Protein; Transforming Growth Factor beta1 | 2012 |
Human embryonic stem cells differentiated to lung lineage-specific cells ameliorate pulmonary fibrosis in a xenograft transplant mouse model.
Our aim was to differentiate human (h) embryonic stem (ES) cells into lung epithelial lineage-specific cells [i.e., alveolar epithelial type I (AEI) and type II (AEII) cells and Clara cells] as the first step in the development of cell-based strategies to repair lung injury in the bleomycin mouse model of idiopathic pulmonary fibrosis (IPF). A heterogeneous population of non-ciliated lung lineage-specific cells was derived by a novel method of embryoid body (EB) differentiation. This differentiated human cell population was used to modulate the profibrotic phenotype in transplanted animals.. Omission or inclusion of one or more components in the differentiation medium skewed differentiation of H7 hES cells into varying proportions of AEI, AEII, and Clara cells. ICG-001, a small molecule inhibitor of Wnt/β-catenin/Creb-binding protein (CBP) transcription, changed marker expression of the differentiated ES cells from an AEII-like phenotype to a predominantly AEI-like phenotype. The differentiated cells were used in xenograft transplantation studies in bleomycin-treated Rag2γC(-/-) mice. Human cells were detected in lungs of the transplanted groups receiving differentiated ES cells treated with or without ICG-001. The increased lung collagen content found in bleomycin-treated mice receiving saline was significantly reduced by transplantation with the lung-lineage specific epithelial cells differentiated from ES cells. A significant increase in progenitor number was observed in the airways of bleomycin-treated mice after transplantation of differentiated hES cells.. This study indicates that ES cell-based therapy may be a powerful novel approach to ameliorate lung fibrosis. Topics: Animals; Bleomycin; Bridged Bicyclo Compounds, Heterocyclic; Cell Differentiation; Cell Lineage; Collagen; Disease Models, Animal; Embryonic Stem Cells; Gene Expression Regulation; Humans; Lung; Mice; Phenotype; Pulmonary Fibrosis; Pyrimidinones; Stem Cell Transplantation; Transplantation, Heterologous | 2012 |
Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis.
Idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia is a ravaging condition of progressive lung scarring and destruction. Anti-inflammatory therapies including corticosteroids have limited efficacy in this ultimately fatal disorder. An important unmet need is to identify new agents that interact with key molecular pathways involved in the pathogenesis of pulmonary fibrosis to prevent progression or reverse fibrosis in these patients. Because aberrant activation of the Wnt/beta-catenin signaling cascade occurs in lungs of patients with IPF, we have targeted this pathway for intervention in pulmonary fibrosis using ICG-001, a small molecule that specifically inhibits T-cell factor/beta-catenin transcription in a cyclic AMP response-element binding protein binding protein (CBP)-dependent fashion. ICG-001 selectively blocks the beta-catenin/CBP interaction without interfering with the beta-catenin/p300 interaction. We report here that ICG-001 (5 mg/kg per day) significantly inhibits beta-catenin signaling and attenuates bleomycin-induced lung fibrosis in mice, while concurrently preserving the epithelium. Administration of ICG-001 concurrent with bleomycin prevents fibrosis, and late administration is able to reverse established fibrosis and significantly improve survival. Because no effective treatment for IPF exists, selective inhibition of Wnt/beta-catenin-dependent transcription suggests a potential unique therapeutic approach for pulmonary fibrosis. Topics: Animals; beta Catenin; Bleomycin; Bridged Bicyclo Compounds, Heterocyclic; CREB-Binding Protein; Mice; Pulmonary Fibrosis; Pyrimidinones; Signal Transduction; Transcription, Genetic; Wnt Proteins | 2010 |