icg-001 and Neointima

icg-001 has been researched along with Neointima* in 1 studies

Other Studies

1 other study(ies) available for icg-001 and Neointima

ArticleYear
Inhibition of Smooth Muscle β-Catenin Hinders Neointima Formation After Vascular Injury.
    Arteriosclerosis, thrombosis, and vascular biology, 2017, Volume: 37, Issue:5

    Smooth muscle cells (SMCs) contribute to neointima formation after vascular injury. Although β-catenin expression is induced after injury, whether its function is essential in SMCs for neointimal growth is unknown. Moreover, although inhibitors of β-catenin have been developed, their effects on SMC growth have not been tested. We assessed the requirement for SMC β-catenin in short-term vascular homeostasis and in response to arterial injury and investigated the effects of β-catenin inhibitors on vascular SMC growth.. We used an inducible, conditional genetic deletion of β-catenin in SMCs of adult mice. Uninjured arteries from adult mice lacking SMC β-catenin were indistinguishable from controls in terms of structure and SMC marker gene expression. After carotid artery ligation, however, vessels from mice lacking SMC β-catenin developed smaller neointimas, with lower neointimal cell proliferation and increased apoptosis. SMCs lacking β-catenin showed decreased mRNA expression of. SMC β-catenin is dispensable for maintenance of the structure and state of differentiation of uninjured adult arteries, but is required for neointima formation after vascular injury. Pharmacological β-catenin inhibitors hinder growth of human vascular SMCs. Thus, inhibiting β-catenin has potential as a therapy to limit SMC accumulation and vascular obstruction.

    Topics: Animals; Apoptosis; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Carotid Arteries; Carotid Artery Injuries; Cell Movement; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Genotype; Humans; Male; Mice, Knockout; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Neointima; Phenotype; Pyrimidinones; Signal Transduction; Time Factors; Triazines; Vascular Remodeling

2017