icg-001 and Liver-Neoplasms

icg-001 has been researched along with Liver-Neoplasms* in 5 studies

Other Studies

5 other study(ies) available for icg-001 and Liver-Neoplasms

ArticleYear
Wnt/β-catenin inhibitor ICG-001 enhances the antitumor efficacy of radiotherapy by increasing radiation-induced DNA damage and improving tumor immune microenvironment in hepatocellular carcinoma.
    Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 2021, Volume: 162

    Radiotherapy (RT) has a promising anti-tumor effect depending on its effects on both cancer cells and tumor immune microenvironment (TIME). As one of the most common alterations in hepatocellular carcinoma (HCC), wnt/β-catenin pathway activation, has been reported to induce radioresistance and suppressive TIME. In this study, we aim to explore the effect of wnt/β-catenin inhibitor ICG-001 on radiosensitivity and RT-related TIME of HCC and the underlying mechanism.. C57BL/6 and nude mouse tumor models were used to evaluate the efficacy of different treatments on tumor growth, recurrence and mice survival. Flow cytometry was performed to assess tumor infiltrating lymphocytes (TILs). DNA damage response (DDR) and radioresistance was investigated by colony formation assays, γ-H2AX and micronuclei measurements.. Our findings showed that ICG-001 displayed both local and systematic effects by increasing radiosensitivity and improving immunity in HCC, which indicated that ICG-001 might be a potential synergetic treatment for radiotherapy and radioimmunotherapy in HCC patients.

    Topics: Animals; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Carcinoma, Hepatocellular; CD8-Positive T-Lymphocytes; Cell Line, Tumor; DNA Damage; Humans; Liver Neoplasms; Mice; Mice, Inbred C57BL; Mice, Nude; Neoplasm Recurrence, Local; Pyrimidinones; Tumor Microenvironment

2021
Inhibition of CREB binding protein-beta-catenin signaling down regulates CD133 expression and activates PP2A-PTEN signaling in tumor initiating liver cancer cells.
    Cell communication and signaling : CCS, 2018, 03-12, Volume: 16, Issue:1

    The WNT-beta-catenin pathway is known to regulate cellular homeostasis during development and tissue regeneration. Activation of WNT signaling increases the stability of cytoplasmic beta-catenin and enhances its nuclear translocation. Nuclear beta-catenin function is regulated by transcriptional co-factors such as CREB binding protein (CBP) and p300. Hyper-activated WNT-beta-catenin signaling is associated with many cancers. However, its role in inducing stemness to liver cancer cells, its autoregulation and how it regulates tumor suppressor pathways are not well understood. Here we have investigated the role of CBP-beta-catenin signaling on the expression of CD133, a known stem cell antigen and PP2A-PTEN pathway in tumor initiating liver cancer cells.. Human hepatoblastoma cell line HepG2 and clonally expanded CD133 expressing tumor initiating liver cells (TICs) from premalignant murine liver were used in this study. CBP-beta-catenin inhibitor ICG001 was used to target CBP-beta catenin signaling in liver cancer cells in vitro. Western blotting and real time PCR (qPCR) were used to quantify protein expression/phosphorylation and mRNA levels, respectively. CBP and CD133 gene silencing was performed by siRNA transfection. Fluorescence Activated Cell Sorting (FACS) was performed to quantify CD133 positive cells. Protein Phosphatase (PP2A) activity was measured after PP2AC immunoprecipitation.. CBP inhibitor ICG001 and CBP silencing significantly reduced CD133 expression and anchorage independent growth in HepG2 and murine TICs. CD133 silencing in TICs decreased cell proliferation and expression levels of cell cycle regulatory genes, CyclinD1 and CyclinA2. ICG001 treatment and CBP silencing reduced the levels of phospho. CBP-beta-catenin signaling promotes stemness via CD133 induction and cell proliferation in TICs. We found a novel functional link between CBP-beta-catenin and PP2A-PTEN-AKT pathway in liver TICs. Therefore, CBP-beta-catenin-PP2A-PTEN-AKT signaling axis could be a novel therapeutic target to prevent liver tumor initiation and cancer recurrence.

    Topics: AC133 Antigen; Animals; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Carboxylic Ester Hydrolases; Cell Line, Tumor; Cell Proliferation; CREB-Binding Protein; Cyclin A2; Cyclin D1; Down-Regulation; Hep G2 Cells; Humans; Liver Neoplasms; Mice; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Pyrimidinones; RNA Interference; RNA, Small Interfering; Signal Transduction

2018
Inhibition of the Wnt/β-catenin signaling pathway improves the anti-tumor effects of sorafenib against hepatocellular carcinoma.
    Cancer letters, 2016, 10-10, Volume: 381, Issue:1

    Sorafenib, a multikinase inhibitor, is currently the only approved drug for advanced hepatocellular carcinoma (HCC). The current study tested the hypothesis whether inhibition of the Wnt/β-catenin signaling pathway could improve the anti-tumor effects of sorafenib in HCC. ICG-001, a small molecule which blocks the interaction of β-catenin with its transcriptional coactivator CBP, dose-dependently enhanced the growth-suppressive and apoptosis-induction effects of sorafenib in multiple HCC cell lines. Downregulation of β-catenin by RNA interference increased sorafenib sensitivity, whereas overexpression of β-catenin reduced sorafenib sensitivity in Huh7 cells. The sorafenib-sensitization effect of short hairpin RNA (shRNA)-mediated β-catenin downregulation in Huh7 cells was attenuated by β-catenin overexpression. Mechanistically, sorafenib combined with ICG-001 or shRNA-mediated β-catenin downregulation augmented the induction of apoptosis, and resulted in a significant downregulation of Mcl-1 in HCC cells. In Huh7 cell mouse xenograft model, the combination of ICG-001 and sorafenib showed a more significant growth-retarding effect than single agent treatment of sorafenib or ICG-001. Our data indicate that inhibition of the Wnt/β-catenin signaling pathway improves the antitumor effects of sorafenib against HCC in vitro and in vivo.

    Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Apoptosis Regulatory Proteins; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Carcinoma, Hepatocellular; Cell Proliferation; Dose-Response Relationship, Drug; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; Liver Neoplasms; Male; Mice, Inbred BALB C; Mice, Nude; Myeloid Cell Leukemia Sequence 1 Protein; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrimidinones; RNA Interference; RNAi Therapeutics; Sorafenib; Transfection; Wnt Signaling Pathway; Xenograft Model Antitumor Assays

2016
Identification and characterization of a novel small-molecule inhibitor of β-catenin signaling.
    The American journal of pathology, 2014, Volume: 184, Issue:7

    Hepatocellular carcinoma (HCC), the third most common cause of cancer-related deaths worldwide, lacks effective medical therapy. Large subsets of HCC demonstrate Wnt/β-catenin activation, making this an attractive therapeutic target. We report strategy and characterization of a novel small-molecule inhibitor, ICG-001, known to affect Wnt signaling by disrupting β-catenin-CREB binding protein interactions. We queried the ZINC online database for structural similarity to ICG-001 and identified PMED-1 as the lead compound, with ≥70% similarity to ICG-001. PMED-1 significantly reduced β-catenin activity in hepatoblastoma and several HCC cells, as determined by TOPflash reporter assay, with an IC50 ranging from 4.87 to 32 μmol/L. Although no toxicity was observed in primary human hepatocytes, PMED-1 inhibited Wnt target expression in HCC cells, including those with CTNNB1 mutations, and impaired cell proliferation and viability. PMED-1 treatment decreased β-catenin-CREB binding protein interactions without affecting total β-catenin levels or activity of other common kinases. PMED-1 treatment of Tg(OTM:d2EGFP) zebrafish expressing GFP under the β-catenin/Tcf reporter led to a notable decrease in β-catenin activity. The PMED effect on β-catenin signaling lasted from 12 to 24 hours in vitro and 6 to 15 hours in vivo. Thus, using a rapid and cost-effective computational methodology, we have identified a novel and specific small-molecule inhibitor of Wnt signaling that may have implications for HCC treatment.

    Topics: Animals; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Carcinoma, Hepatocellular; Cell Line, Tumor; CREB-Binding Protein; Drug Discovery; Humans; Inhibitory Concentration 50; Liver Neoplasms; Pyrimidinones; Structure-Activity Relationship; Wnt Signaling Pathway; Zebrafish

2014
Pharmacological inhibition of beta-catenin in hepatoblastoma cells.
    Pediatric surgery international, 2013, Volume: 29, Issue:2

    The proto-oncogene beta-catenin is linked to an abnormal activation of the Wnt/beta-catenin-pathway and shows mutations in 50-90 % of hepatoblastoma (HB). Corresponding, the recently published murine orthotopic HB model differs from the former subcutaneous model by nuclear beta-catenin distribution. As the nuclear localization of beta-catenin is considered to reflect a more aggressive tumor growth, the influence of beta-catenin inhibition on cell viability and drug-efficiency in HB cells was analyzed.. Beta-catenin distribution in HB cells was analyzed by immunofluorescence. The influence of beta-catenin inhibitors Celecoxib, Etodolac, ICG001, and MET kinase inhibitor (SU11274) alone and in combination with cisplatin (CDDP) on HB cell lines (HuH6, HepT1) was evaluated by cell viability assays and BrdU incorporation.. Celecoxib and ICG001 reduced dose-dependently HB cell viability and decreased nuclear beta-catenin in cultivated HB cells. Etodolac was without influence at concentrations up to 100 μM. Combinations of Celecoxib or ICG001 with MET kinase inhibitor or CDDP resulted in additive reduction of cell viability.. Pharmaceutical beta-catenin inhibitors can modulate the nuclear localization of beta-catenin and reduce cell viability of HB cells in vitro. These promising effects might optimize the outcome of high-risk HB. The orthotopic HB model is a suitable basis for further in vivo studies.

    Topics: Antineoplastic Agents; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Celecoxib; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cisplatin; Etodolac; Hepatoblastoma; Humans; Liver Neoplasms; Protein Kinase Inhibitors; Proto-Oncogene Mas; Pyrazoles; Pyrimidinones; Sulfonamides; Tissue Distribution; Tumor Cells, Cultured

2013