icg-001 has been researched along with Fibrosis* in 8 studies
1 review(s) available for icg-001 and Fibrosis
Article | Year |
---|---|
Fibrogenic Disorders in Human Diseases: From Inflammation to Organ Dysfunction.
Fibrosis is an inadequate response to tissue stress with very few therapeutic options to prevent its progression to organ dysfunction. There is an urgent need to identify drugs with a therapeutic potential for fibrosis, either by designing and developing new compounds or by repurposing drugs already in clinical use which were developed for other indications. In this Perspective, we summarize some pathways and biological targets involved in fibrosis development and maintenance, focusing on common mechanisms between organs and diseases. We review the therapeutic agents under experimental development, clinical trials, or in clinical use for the treatment of fibrotic disorders, evaluating the reasons for the discrepancies observed between preclinical and clinical results. We also discuss the improvement that we envision in the development of therapeutic molecules able to achieve improved potential for treatment, including indirect modulators, targeting approaches, or drug combinations. Topics: Animals; Drug Discovery; Fibrosis; Humans; Molecular Targeted Therapy; Organ Specificity | 2018 |
7 other study(ies) available for icg-001 and Fibrosis
Article | Year |
---|---|
Prevention of urethral fibrosis induced by transforming growth factor beta 1 using selective Wnt/β-catenin signaling inhibitors in a rat model.
To determine the anti-fibrotic effects of Wnt/β-catenin signaling inhibitors on urethral stricture.. Human fibroblasts were exposed to transforming growth factor beta 1 combined with various concentrations of Wnt/β-catenin inhibitors (ICG-001, IWR-1, and PRI-724), and cell proliferation and migration were evaluated. Urethral fibrosis was induced in male Sprague-Dawley rats by urethral injection of transforming growth factor beta 1 and co-treatement with inhibitors. Urethral tissues were harvested 2 weeks after the injection. The messenger ribonucleic acid and protein expression was examined for fibrosis markers Axin-1, collagen type 1, alpha smooth muscle actin, and β-catenin. Histological analysis of fibrosis and collagen deposition was also performed.. Cell migration was ameliorated by ICG-001 and PRI-724. Protein and messenger ribonucleic acid expression of collagen type 1 and alpha smooth muscle actin in transforming growth factor beta 1-treated fibroblasts decreased in a concentration-dependent manner with the ICG-001 and PRI-724 treatments (P < 0.05). However, there were no significant changes with the IWR-1 treatment. Collagen type I and alpha smooth muscle actin messenger ribonucleic acid and protein expression were both significantly increased in the urethral tissues of rats with transforming growth factor beta 1-induced urethral fibrosis. Rats co-treated with ICG-001 or PRI-724 showed relatively mild fibrosis and significantly reduced collagen type I and alpha smooth muscle actin messenger ribonucleic acid and protein expression (P < 0.05).. ICG-001 and PRI-724 significantly ameliorated urethral fibrosis induced by transforming growth factor beta 1 in rats. These results suggest that ICG-001 and PRI-724 can be developed as therapeutics for treating urethral stricture. Topics: Actins; Animals; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Collagen; Collagen Type I; Fibrosis; Male; Pyrimidinones; Rats; Rats, Sprague-Dawley; RNA; Transforming Growth Factor beta; Urethral Stricture; Wnt Signaling Pathway | 2022 |
Inhibition of the canonical Wnt signaling pathway by a β-catenin/CBP inhibitor prevents heart failure by ameliorating cardiac hypertrophy and fibrosis.
In heart failure (HF) caused by hypertension, the myocyte size increases, and the cardiac wall thickens. A low-molecular-weight compound called ICG001 impedes β-catenin-mediated gene transcription, thereby protecting both the heart and kidney. However, the HF-preventive mechanisms of ICG001 remain unclear. Hence, we investigated how ICG001 can prevent cardiac hypertrophy and fibrosis induced by transverse aortic constriction (TAC). Four weeks after TAC, ICG001 attenuated cardiac hypertrophy and fibrosis in the left ventricular wall. The TAC mice treated with ICG001 showed a decrease in the following: mRNA expression of brain natriuretic peptide (Bnp), Klf5, fibronectin, β-MHC, and β-catenin, number of cells expressing the macrophage marker CD68 shown in immunohistochemistry, and macrophage accumulation shown in flow cytometry. Moreover, ICG001 may mediate the substrates in the glycolysis pathway and the distinct alteration of oxidative stress during cardiac hypertrophy and HF. In conclusion, ICG001 is a potential drug that may prevent cardiac hypertrophy and fibrosis by regulating KLF5, immune activation, and the Wnt/β-catenin signaling pathway and inhibiting the inflammatory response involving macrophages. Topics: Animals; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Cardiomegaly; Cardiomyopathies; Fibrosis; Glycolysis; Heart Failure; Inflammation; Kruppel-Like Transcription Factors; Macrophages; Membrane Proteins; Mice; Myocardium; Oxidative Stress; Phosphoproteins; Pyrimidinones; Wnt Signaling Pathway | 2021 |
C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway.
Chronic kidney disease (CKD) has a high prevalence worldwide. Renal fibrosis is the common pathological feature in various types of CKD. However, the underlying mechanisms are not determined. Here, we adopted different CKD mouse models and cultured human proximal tubular cell line (HKC-8) to examine the expression of C-X-C motif chemokine receptor 4 (CXCR4) and β-catenin signalling, as well as their relationship in renal fibrosis. In CKD mice and humans with a variety of nephropathies, CXCR4 was dramatically up-regulated in tubules, with a concomitant activation of β-catenin. CXCR4 expression level was positively correlated with the expression of β-catenin target MMP-7. AMD3100, a CXCR4 receptor blocker, and gene knockdown of CXCR4 significantly inhibited the activation of JAK/STAT and β-catenin signalling, protected against tubular injury and renal fibrosis. CXCR4-induced renal fibrosis was inhibited by treatment with ICG-001, an inhibitor of β-catenin signalling. In HKC-8 cells, overexpression of CXCR4 induced activation of β-catenin and deteriorated cell injury. These effects were inhibited by ICG-001. Stromal cell-derived factor (SDF)-1α, the ligand of CXCR4, stimulated the activation of JAK2/STAT3 and JAK3/STAT6 signalling in HKC-8 cells. Overexpression of STAT3 or STAT6 decreased the abundance of GSK3β mRNA. Silencing of STAT3 or STAT6 significantly blocked SDF-1α-induced activation of β-catenin and fibrotic lesions. These results uncover a novel mechanistic linkage between CXCR4 and β-catenin activation in renal fibrosis in association with JAK/STAT/GSK3β pathway. Our studies also suggest that targeted inhibition of CXCR4 may provide better therapeutic effects on renal fibrosis by inhibiting multiple downstream signalling cascades. Topics: Amino Acid Motifs; Animals; Benzylamines; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Chemokine CXCL12; Cyclams; Disease Models, Animal; Fibrosis; Gene Expression Regulation; Gene Knockdown Techniques; Glycogen Synthase Kinase 3 beta; Humans; Janus Kinase 2; Kidney; Matrix Metalloproteinase 7; Mice; Pyrimidinones; Receptors, CXCR4; Renal Insufficiency, Chronic; STAT3 Transcription Factor; STAT6 Transcription Factor | 2020 |
Promotion of β-catenin/Foxo1 signaling ameliorates renal interstitial fibrosis.
Transforming growth factor β (TGF-β) is the key cytokine involved in causing fibrosis through cross-talk with major profibrotic pathways. However, inhibition of TGF-β to prevent fibrosis would also abrogate its anti-inflammatory and wound-healing effects. β-catenin is a common co-factor in most TGF-β signaling pathways. β-catenin binds to T-cell factor (TCF) to activate profibrotic genes and binds to Forkhead box O (Foxo) to promote cell survival under oxidative stress. Using a proximity ligation assay in human kidney biopsies, we found that β-catenin/Foxo interactions were higher in kidney with little fibrosis, whereas β-catenin/TCF interactions were upregulated in the kidney of patients with fibrosis. We hypothesised that β-catenin/Foxo is protective against kidney fibrosis. We found that Foxo1 protected against rhTGF-β1-induced profibrotic protein expression using a CRISPR/cas9 knockout of Foxo1 or TCF1 in murine kidney tubular epithelial C1.1 cells. Co-administration of TGF-β with a small molecule inhibitor of β-catenin/TCF (ICG-001), protected against kidney fibrosis in unilateral ureteral obstruction. Collectively, our human, animal and in vitro findings suggest β-catenin/Foxo as a therapeutic target in kidney fibrosis. Topics: Animals; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Cell Line; Disease Models, Animal; Fibrosis; Forkhead Box Protein O1; Gene Knockout Techniques; Hepatocyte Nuclear Factor 1-alpha; Humans; Kidney; Kidney Diseases; Male; Mice; Pyrimidinones; Signal Transduction; Transforming Growth Factor beta1 | 2019 |
Application of Wnt Pathway Inhibitor Delivering Scaffold for Inhibiting Fibrosis in Urethra Strictures: In Vitro and in Vivo Study.
To evaluate the mechanical property and biocompatibility of the Wnt pathway inhibitor (ICG-001) delivering collagen/poly(L-lactide-co-caprolactone) (P(LLA-CL)) scaffold for urethroplasty, and also the feasibility of inhibiting the extracellular matrix (ECM) expression in vitro and in vivo.. ICG-001 (1 mg (2 mM)) was loaded into a (P(LLA-CL)) scaffold with the co-axial electrospinning technique. The characteristics of the mechanical property and drug release fashion of scaffolds were tested with a mechanical testing machine (Instron) and high-performance liquid chromatography (HPLC). Rabbit bladder epithelial cells and the dermal fibroblasts were isolated by enzymatic digestion method. (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay) and scanning electron microscopy (SEM) were used to evaluate the viability and proliferation of the cells on the scaffolds. Fibrolasts treated with TGF-β1 and ICG-001 released medium from scaffolds were used to evaluate the anti-fibrosis effect through immunofluorescence, real time PCR and western blot. Urethrography and histology were used to evaluate the efficacy of urethral implantation.. The scaffold delivering ICG-001 was fabricated, the fiber diameter and mechanical strength of scaffolds with inhibitor were comparable with the non-drug scaffold. The SEM and MTT assay showed no toxic effect of ICG-001 to the proliferation of epithelial cells on the collagen/P(LLA-CL) scaffold with ICG-001. After treatment with culture medium released from the drug-delivering scaffold, the expression of Collagen type 1, 3 and fibronectin of fibroblasts could be inhibited significantly at the mRNA and protein levels. In the results of urethrography, urethral strictures and fistulas were found in the rabbits treated with non-ICG-001 delivering scaffolds, but all the rabbits treated with ICG-001-delivering scaffolds showed wide caliber in urethras. Histology results showed less collagen but more smooth muscle and thicker epithelium in urethras repaired with ICG-001 delivering scaffolds.. After loading with the Wnt signal pathway inhibitor ICG-001, the Collagen/P(LLA-CL) scaffold could facilitate a decrease in the ECM deposition of fibroblasts. The ICG-001 delivering Collagen/P(LLA-CL) nanofibrous scaffold seeded with epithelial cells has the potential to be a promising substitute material for urethroplasty. Longer follow-up study in larger animals is needed in the future. Topics: Animals; Bridged Bicyclo Compounds, Heterocyclic; Cell Proliferation; Collagen Type I; Constriction, Pathologic; Delayed-Action Preparations; Drug Delivery Systems; Epithelial Cells; Fibrosis; Male; Pyrimidinones; Rabbits; Tissue Engineering; Tissue Scaffolds; Transforming Growth Factor beta1; Urethra; Urethral Stricture; Wnt Signaling Pathway | 2015 |
Combined inhibition of morphogen pathways demonstrates additive antifibrotic effects and improved tolerability.
The morphogen pathways Hedgehog, Wnt and Notch are attractive targets for antifibrotic therapies in systemic sclerosis. Interference with stem cell regeneration, however, may complicate the use of morphogen pathway inhibitors. We therefore tested the hypothesis that combination therapies with low doses of Hedgehog, Wnt and Notch inhibitors maybe safe and effective for the treatment of fibrosis.. Skin fibrosis was induced by bleomycin and by overexpression of a constitutively active TGF-β receptor type I. Adverse events were assessed by clinical monitoring, pathological evaluation and quantification of Lgr5-positive intestinal stem cells.. Inhibition of Hedgehog, Wnt and Notch signalling dose-dependently ameliorated bleomycin-induced and active TGF-β receptor type I-induced fibrosis. Combination therapies with low doses of Hedgehog/Wnt inhibitors or Hedgehog/Notch inhibitors demonstrated additive antifibrotic effects in preventive as well as in therapeutic regimes. Combination therapies were well tolerated. In contrast with high dose monotherapies, combination therapies did not reduce the number of Lgr5 positive intestinal stem cells.. Combined inhibition of morphogen pathways exerts additive antifibrotic effects. Combination therapies are well tolerated and, in contrast to high dose monotherapies, may not impair stem cell renewal. Combined targeting of morphogen pathways may thus help to overcome dose-limiting toxicity of Hedgehog, Wnt and Notch signalling. Topics: Amyloid Precursor Protein Secretases; Animals; Bleomycin; Bridged Bicyclo Compounds, Heterocyclic; Disease Models, Animal; Drug Therapy, Combination; Fibrosis; Hedgehog Proteins; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Mice, Transgenic; Protein Serine-Threonine Kinases; Pyrimidinones; Receptor, Transforming Growth Factor-beta Type I; Receptors, Notch; Receptors, Transforming Growth Factor beta; Scleroderma, Systemic; Signal Transduction; Skin; Veratrum Alkaloids; Wnt Proteins; Wnt Signaling Pathway | 2014 |
Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis.
Fibrosis is a major socioeconomic burden, but effective antifibrotic therapies are not available in the clinical routine. There is growing evidence for a central role of Wnt signalling in fibrotic diseases such as systemic sclerosis, and we therefore evaluated the translational potential of pharmacological Wnt inhibition in experimental dermal fibrosis.. We examined the antifibrotic effects of PKF118-310 and ICG-001, two novel inhibitors of downstream canonical Wnt signalling, in the models of prevention and treatment of bleomycin-induced dermal fibrosis as well as in experimental dermal fibrosis induced by adenoviral overexpression of a constitutively active transforming growth factor (TGF)-β receptor I.. PKF118-310 and ICG-001 were well tolerated throughout all experiments. Both therapeutic approaches showed antifibrotic effects in preventing and reversing bleomycin-induced dermal fibrosis as measured by skin thickness, hydroxyproline content and myofibroblast counts. PKF118-310 and ICG-001 were effective in inhibiting TGF-β receptor I-driven fibrosis as assessed by the same outcome measures.. Blockade of canonical Wnt signalling by PKF118-310 and ICG-001 showed antifibrotic effects in different models of skin fibrosis. Both therapies were well tolerated. Although further experimental evidence for efficacy and tolerability is necessary, inhibition of canonical Wnt signalling is a promising treatment approach for fibrosis. Topics: Animals; Bridged Bicyclo Compounds, Heterocyclic; Disease Models, Animal; Fibrosis; Mice; Mice, Inbred DBA; Pyrimidinones; Scleroderma, Systemic; Signal Transduction; Skin; Skin Diseases; Treatment Outcome; Triazines; Wnt Signaling Pathway | 2013 |