icg-001 and Cell-Transformation--Neoplastic

icg-001 has been researched along with Cell-Transformation--Neoplastic* in 1 studies

Other Studies

1 other study(ies) available for icg-001 and Cell-Transformation--Neoplastic

ArticleYear
The β-catenin/CBP-antagonist ICG-001 inhibits pediatric glioma tumorigenicity in a Wnt-independent manner.
    Oncotarget, 2017, Apr-18, Volume: 8, Issue:16

    Pediatric high-grade gliomas (pedHGG) belong to the most aggressive cancers in children with a poor prognosis due to a lack of efficient therapeutic strategies. The β-catenin/Wnt-signaling pathway was shown to hold promising potential as a treatment target in adult high-grade gliomas by abrogating tumor cell invasion and the acquisition of stem cell-like characteristics. Since pedHGG differ from their adult counterparts in genetically and biologically we aimed to investigate the effects of β-catenin/Wnt-signaling pathway-inhibition by the β-catenin/CBP antagonist ICG-001 in pedHGG cell lines. In contrast to adult HGG, pedHGG cells displayed minimal detectable canonical Wnt-signaling activity. Nevertheless, low doses of ICG-001 inhibited cell migration/invasion, tumorsphere- and colony formation, proliferation in vitro as well as tumor growth in vivo/ovo, suggesting that ICG-001 affects pedHGG tumor cell characteristics independent of β-catenin/Wnt-signaling. RNA-sequencing analyses support a Wnt/β-catenin-independent effect of ICG-001 on target gene transcription, revealing strong effects on genes involved in cellular metabolic/biosynthetic processes and cell cycle progression. Among these, high mRNA expression of cell cycle regulator JDP2 was found to confer a better prognosis for pedHGG patients. In conclusion, ICG-001 might offer an effective treatment option for pedHGG patients functioning to regulate cell phenotype and gene expression programs in absence of Wnt/β-catenin signaling-activity.

    Topics: Adolescent; Animals; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Cell Line, Tumor; Cell Movement; Cell Self Renewal; Cell Survival; Cell Transformation, Neoplastic; Chick Embryo; Child; Child, Preschool; CREB-Binding Protein; Databases, Genetic; Disease Models, Animal; Glioma; Humans; Kaplan-Meier Estimate; Neoplastic Stem Cells; Prognosis; Pyrimidinones; Wnt Signaling Pathway; Young Adult

2017