icatibant has been researched along with Neuralgia* in 2 studies
2 other study(ies) available for icatibant and Neuralgia
Article | Year |
---|---|
Contribution and interaction of kinin receptors and dynorphin A in a model of trigeminal neuropathic pain in mice.
Infraorbital nerve constriction (CION) causes hypersensitivity to facial mechanical, heat and cold stimulation in rats and mice and is a reliable model to study trigeminal neuropathic pain. In this model there is evidence that mechanisms operated by kinin B1 and B2 receptors contribute to heat hyperalgesia in both rats and mice. Herein we further explored this issue and assessed the role of kinin receptors in mechanical hyperalgesia after CION. Swiss and C57Bl/6 mice that underwent CION or sham surgery or dynorphin A (1-17) administration were repeatedly submitted to application of either heat stimuli to the snout or mechanical stimuli to the forehead. Treatment of the animals on the fifth day after CION surgery with DALBK (B1 receptor antagonist) or HOE-140 (B2 receptor antagonist), both at 0.01-1μmol/kg (i.p.), effectively reduced CION-induced mechanical hyperalgesia. Knockout mice for kinin B1, B2 or B1/B2 receptors did not develop heat or mechanical hyperalgesia in response to CION. Subarachnoid dynorphin A (1-17) delivery (15nmol/5μL) also resulted in orofacial heat hyperalgesia, which was attenuated by post-treatment with DALBK (1 and 3μmol/kg, i.p.), but was not affected by HOE-140. Additionally, treatment with an anti-dynorphin A antiserum (200μg/5μL, s.a.) reduced CION-induced heat hyperalgesia for up to 2h. These results suggest that both kinin B1 and B2 receptors are relevant in orofacial sensory nociceptive changes induced by CION. Furthermore, they also indicate that dynorphin A could stimulate kinin receptors and this effect seems to contribute to the maintenance of trigeminal neuropathic pain. Topics: Animals; Bradykinin; Bradykinin B1 Receptor Antagonists; Bradykinin B2 Receptor Antagonists; Disease Models, Animal; Dynorphins; Facial Pain; Hot Temperature; Hyperalgesia; Male; Mice, Inbred C57BL; Mice, Knockout; Neuralgia; Neurotransmitter Agents; Pain Measurement; Receptors, Bradykinin; Touch | 2015 |
Peripheral kinin B(1) and B(2) receptor-operated mechanisms are implicated in neuropathic nociception induced by spinal nerve ligation in rats.
The kinin system can contribute distinctly to the sensory changes associated with different models of nerve injury-induced neuropathic pain. This study examines the roles of kinin B(1) and B(2) receptor-operated mechanisms in alterations in nociceptive responses of rats submitted to unilateral L5/L6 spinal nerve ligation (SNL) injury. Behavioural responses to ipsilateral hind paw stimulation with acetone (evaporation-evoked cooling), radiant heat (Hargreaves method) or von Frey hairs revealed that SNL rats developed long-lasting cold allodynia (from Days 3 to 40 post-surgery, peak on Day 6), heat hyperalgesia (stable peak from Days 9 to 36) and tactile allodynia (stable peak from Days 3 to 51). SNL rats manifested nocifensive responses to intraplantar injections on Day 12 of the selective B(1) receptor agonist des-Arg(9)-bradykinin (DABK) and augmented responses to the selective B(2) receptor agonist bradykinin (BK; each at 0.01-1nmol/paw). Systemic treatment of SNL rats with des-Arg(9)-Leu(8)-BK or HOE 140 (peptidic B(1) and B(2) receptor antagonists, respectively; 0.1-1mumol/kg, i.p.) selectively blocked responses triggered by DABK and BK (1nmol/paw) and alleviated partially and transiently established cold allodynia, heat hyperalgesia and (to a lesser extent) tactile allodynia. Western blot analysis revealed enhanced expression of kinin B(1) and B(2) receptor protein in ipsilateral L4-L6 spinal nerve and hind paw skin samples collected on Day 12 after SNL surgery. These results indicate that peripheral pronociceptive kinin B(1) and B(2) receptor-operated mechanisms contribute significantly to the maintenance of hind paw cold and mechanical allodynia and heat hyperalgesia induced by L5/L6 SNL in rats. Topics: Animals; Behavior, Animal; Bradykinin; Bradykinin B1 Receptor Antagonists; Bradykinin B2 Receptor Antagonists; Disease Models, Animal; Drug Administration Routes; Functional Laterality; Hyperalgesia; Ligation; Male; Neuralgia; Pain Measurement; Pain Threshold; Rats; Rats, Wistar; Receptor, Bradykinin B1; Receptor, Bradykinin B2; Spinal Nerves; Time Factors | 2007 |