icatibant and Myocardial-Ischemia

icatibant has been researched along with Myocardial-Ischemia* in 29 studies

Reviews

3 review(s) available for icatibant and Myocardial-Ischemia

ArticleYear
Role of kinins in the pathophysiology of myocardial ischemia. In vitro and in vivo studies.
    Diabetes, 1996, Volume: 45 Suppl 1

    In ischemia, the heart generates and releases kinins as mediators that seem to have cardioprotective actions. Kinin-generating pathways are present in the heart. Kininogen, kininogenases, kinins, and B2 kinin receptors can be measured in cardiac tissue. Kinins are released under conditions of ischemia. In anesthetized rats and dogs with coronary artery ligation and in human patients with myocardial infarction, kinin plasma levels are increased. In isolated rat hearts, the outflow of kinins is enhanced during ischemia but markedly attenuated after deendothelialization, pointing to the coronary vascular endothelium as the main possible source. Kinins administered locally exert beneficial cardiac effects. In isolated rat hearts with ischemia-reperfusion injuries, perfusion with bradykinin (BK) reduces the duration and incidence of ventricular fibrillation, improves cardiodynamics, reduces release of cytosolic enzymes, and preserves energy-rich phosphates and glycogen stores. In anesthetized animals, intracoronary BK is followed by comparable beneficial changes and limits infarct size. Inhibition of breakdown of BK and related peptides induces beneficial cardiac effects. Treatment with ACE inhibitors such as ramipril increases cardiac kinin levels and reduces post-ischemic reperfusion injuries in isolated rat hearts and infarct size in anesthetized animals. The importance of an intact endothelium that continuously generates kinins is supported by observations that basal and ramipril-induced release of kinins and PGI2 is markedly reduced after deendothelialization of isolated hearts. Blockade of B2 kinin receptors increases ischemia-induced effects. Endothelial formation of NO and PGI2 by ACE inhibition is prevented by the specific B2 kinin receptor antagonist icatibant. In isolated hearts, ischemia-reperfusion injuries deteriorate with icatibant, which also abolishes the cardioprotective effects of ACE inhibitors and of exogenous BK. Infarct size reduction by ACE inhibitors and by BK in anesthetized animals is reversed by icatibant. Kinins contribute to the cardioprotective effects associated with ischemic preconditioning because preconditioning or BK-induced antiarrhythmic and infarct size-limiting effects are attenuated by icatibant. In conclusion, kinins may act as mediators of endogenous cardioprotective mechanisms. Kinins are generated and released during ischemia, with subsequent formation of PGI2 and NO probably derived mainly from the coronary vascula

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Bradykinin Receptor Antagonists; Coronary Circulation; Dogs; Humans; Myocardial Ischemia; Myocardium; Rabbits; Rats

1996
Bradykinin as an endogenous myocardial protective substance with particular reference to ischemic preconditioning--a brief review of the evidence.
    Canadian journal of physiology and pharmacology, 1995, Volume: 73, Issue:7

    The present brief review summarizes the evidence for the possibility that endogenously released bradykinin plays a major role in protecting the heart against the consequences of acute myocardial injury. This evidence includes the facts that kinins are generated under myocardial ischemia; that when they are administered, they are cardioprotective (e.g., antiarrhythmic); that drugs that enhance the release of bradykinin from the ischemic heart reduce the ischemic injury and, conversely, drugs that block bradykinin receptors attenuate the reduction in ischemic injury resulting from the release of, or administration of, bradykinin. The possible mechanism of bradykinin in the cardioprotection afforded by ischemic preconditioning is summarized. Ischemic preconditioning can be defined as the marked reduction in the severity of ischemic changes that result from coronary artery occlusion when that occlusion is preceded by brief periods of myocardial ischemia, either regional or global, induced, for example, by complete or partial coronary artery occlusion or by rapid ventricular pacing. The possible mechanisms of cardioprotection elicited by bradykinin (and ischemic preconditioning) are summarized. The most likely is the generation of cyclic GMP within the ischemic myocardium following bradykinin-stimulated nitric oxide generation and release from endothelial cells.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Cyclic GMP; Heart; Humans; Myocardial Ischemia; Nitric Oxide

1995
Contribution of bradykinin to the cardiovascular effects of ramipril.
    Journal of cardiovascular pharmacology, 1993, Volume: 22 Suppl 9

    From pharmacologic investigations and clinical studies it is known that angiotensin-converting enzyme (ACE) inhibitors exhibit additional local actions, which are not related to hemodynamic changes and which cannot be explained simply by interference with the renin-angiotensin system with subsequent inhibition of angiotensin II formation. Because ACE is identical to kininase II, which inactivates the nonapeptide bradykinin (BK), potentiation of BK might be responsible for these additional effects of ACE inhibitors. To prove the specificity of BK-mediated effects by ACE inhibition, we used the specific B2 kinin receptor antagonist HOE 140 in different models: endothelial cell cultures; atherosclerosis in high-cholesterol-fed rabbits; neointima formation with smooth cell proliferation and migration after endothelial denudation in rats; myocardial ischemia in rats, rabbits, and dogs; and left ventricular hypertrophy in rats. The beneficial effects of ramipril or BK given in non-blood pressure-lowering doses in these models were abolished by HOE 140 (icatibant). Ramipril exerts cardioprotective effects in different experimental models. The formation of the endothelial autacoids nitric oxide and prostacyclin, enhanced when BK degradation is inhibited by ACE inhibition, may contribute to the observed beneficial effects.

    Topics: Amino Acid Sequence; Animals; Arteriosclerosis; Bradykinin; Cattle; Cholesterol; Diet, Atherogenic; Dogs; Drug Interactions; Endothelium, Vascular; Heart; Humans; Hypertrophy, Left Ventricular; Molecular Sequence Data; Muscle, Smooth, Vascular; Myocardial Ischemia; Rabbits; Ramipril; Rats; Rats, Inbred SHR

1993

Trials

1 trial(s) available for icatibant and Myocardial-Ischemia

ArticleYear
Bradykinin does not mediate remote ischaemic preconditioning or ischaemia-reperfusion injury in vivo in man.
    Heart (British Cardiac Society), 2011, Volume: 97, Issue:22

    To examine whether endogenous bradykinin mediates the endothelium-dependent vasomotor dysfunction induced by ischaemia-reperfusion injury, or the protection afforded by remote ischaemic preconditioning in vivo in man.. Randomised double-blind, cross-over study.. Royal Infirmary of Edinburgh, Wellcome Trust Clinical Research Facility.. Twenty healthy male volunteers.. Subjects were randomised to intravenous infusion of the bradykinin B(2) receptor antagonist, HOE-140 (100 μg/kg), or saline placebo in a double-blind, crossover trial. Ischaemia-reperfusion injury was induced in the non-dominant arm by inflating a cuff to 200 mm Hg for 20 min in all subjects. Ischaemia-reperfusion injury was preceded by three cycles of remote ischaemic preconditioning in the dominant arm in 10 subjects.. Bilateral forearm blood flow was assessed using venous occlusion plethysmography during intra-arterial infusion of acetylcholine (5-20 μg/min).. Acetylcholine caused vasodilatation in all studies (p<0.05) that was attenuated by ischaemia-reperfusion injury, both in the presence (p=0.0002) and absence (p=0.04) of HOE-140. Remote ischaemic preconditioning abolished the impairment of endothelium-dependent vasomotor function induced by ischaemia-reperfusion injury. HOE-140 had no effect on the protection afforded by remote ischaemic preconditioning.. These findings do not support a major role for endogenous bradykinin, acting via the B(2) kinin receptor, in the mechanism of ischaemia-reperfusion injury or the protective effects of remote ischaemic preconditioning in man.. NCT00965120 and NCT00965393.

    Topics: Acetylcholine; Adrenergic beta-Antagonists; Adult; Bradykinin; Bradykinin Receptor Antagonists; Cross-Over Studies; Double-Blind Method; Endothelium, Vascular; Forearm; Hemodynamics; Humans; Infusions, Intravenous; Injections, Intra-Arterial; Ischemic Preconditioning; Male; Myocardial Ischemia; Myocardial Reperfusion Injury; Plethysmography; Prognosis; Reperfusion Injury; Sodium Chloride; Vasodilator Agents

2011

Other Studies

25 other study(ies) available for icatibant and Myocardial-Ischemia

ArticleYear
Bradykinin receptor blockade reduces sympathetic nerve response to muscle contraction in rats with ischemic heart failure.
    American journal of physiology. Heart and circulatory physiology, 2010, Volume: 298, Issue:5

    Previous animal and human studies have suggested that a muscle reflex engaged during contraction leads to heightened levels of sympathetic activity in congestive heart failure (CHF). The present experiment was designed to test the role for bradykinin, which is produced within contracting skeletal muscle and contributes to the muscle reflex through its action on kinin B(2) receptors located on the endings of thin fiber muscle afferents. CHF was induced in rats by myocardial infarction (MI) after coronary artery ligation. Echocardiography was performed to determine fractional shortening (FS), an index of the left ventricular function. In the decerebrate rats, we examined renal sympathetic nerve activity (RSNA) during 1 min intermittent (1 to 4 s stimulation to relaxation) contraction of left triceps surae muscles. RSNA responded synchronously as tension was developed, and the response was significantly (P < 0.05) greater in MI rats [+39 +/- 9% s(-1) (integrated RSNA over time); n = 16] with 20 +/- 2% of FS than that in control healthy rats (+19 +/- 2% s(-1); n = 16) with 49 +/- 2% of FS. Tension development did not differ significantly between the two groups of rats. Thirty minutes after intra-arterial injection into the hindlimb circulation of the kinin B(2) receptor antagonist, HOE-140 (2 microg/kg), the RSNA response to contraction was significantly reduced in the MI rats (+26 +/- 7% s(-1)) but not in the control rats (+17 +/- 2% s(-1)). These data suggest that bradykinin within contracting muscle is part of the exaggerated muscle reflex seen in CHF.

    Topics: Animals; Bradykinin; Bradykinin B1 Receptor Antagonists; Bradykinin B2 Receptor Antagonists; Bradykinin Receptor Antagonists; Coronary Vessels; Decerebrate State; Heart Failure; Heart Rate; Hindlimb; In Vitro Techniques; Kidney; Male; Muscle Contraction; Muscle, Skeletal; Myocardial Ischemia; Neurons, Afferent; Rats; Rats, Sprague-Dawley; Regional Blood Flow; Sympathetic Nervous System; Ultrasonography

2010
Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2010, Volume: 24, Issue:12

    Angiotensin I-converting enzyme (ACE; kininase II) levels in humans are genetically determined. ACE levels have been linked to risk of myocardial infarction, but the association has been inconsistent, and the causality underlying it remains undocumented. We tested the hypothesis that genetic variation in ACE levels influences myocardial tolerance to ischemia. We studied ischemia-reperfusion injury in mice bearing 1 (ACE1c), 2 (ACE2c, wild type), or 3 (ACE3c) functional copies of the ACE gene and displaying an ACE level range similar to humans. Infarct size in ACE1c was 29% lower than in ACE2c (P<0.05). Pretreatment with a kinin B2 receptor antagonist suppressed this reduction. In ACE3c, infarct size was the same as in ACE2c. But ischemic preconditioning, which reduced infarct size in ACE2c (-63%, P<0.001) and ACE1c (-52%, P<0.05), was not efficient in ACE3c (-2%, NS, P<0.01 vs. ACE2c). In ACE3c, ischemic preconditioning did not decrease myocardial inflammation or cardiomyocyte apoptosis. Pretreatment with a renin inhibitor had no cardioprotective effect in ACE2c, but in ACE3c partially restored (38%) the cardioprotection of ischemic preconditioning. Thus, a modest genetic increase in ACE impairs myocardial tolerance to ischemia. ACE level plays a critical role in cardiac ischemia, through both kinin and angiotensin mediated mechanisms.

    Topics: Amides; Angiotensin I; Angiotensin II; Animals; Apoptosis; Blood Pressure; Bradykinin; Bradykinin Receptor Antagonists; Fumarates; Heart; Kinins; Lung; Mice; Mice, Mutant Strains; Myocardial Infarction; Myocardial Ischemia; Myocardium; Peptidyl-Dipeptidase A; Renin; Reperfusion Injury

2010
Role of kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential.
    Circulation research, 2008, Nov-21, Volume: 103, Issue:11

    Reduced migratory function of circulating angiogenic progenitor cells (CPCs) has been associated with impaired neovascularization in patients with cardiovascular disease (CVD). Previous findings underline the role of the kallikrein-kinin system in angiogenesis. We now demonstrate the involvement of the kinin B2 receptor (B(2)R) in the recruitment of CPCs to sites of ischemia and in their proangiogenic action. In healthy subjects, B(2)R was abundantly present on CD133(+) and CD34(+) CPCs as well as cultured endothelial progenitor cells (EPCs) derived from blood mononuclear cells (MNCs), whereas kinin B1 receptor expression was barely detectable. In transwell migration assays, bradykinin (BK) exerts a potent chemoattractant activity on CD133(+) and CD34(+) CPCs and EPCs via a B(2)R/phosphoinositide 3-kinase/eNOS-mediated mechanism. Migration toward BK was able to attract an MNC subpopulation enriched in CPCs with in vitro proangiogenic activity, as assessed by Matrigel assay. CPCs from cardiovascular disease patients showed low B(2)R levels and decreased migratory capacity toward BK. When injected systemically into wild-type mice with unilateral limb ischemia, bone marrow MNCs from syngenic B(2)R-deficient mice resulted in reduced homing of sca-1(+) and cKit(+)flk1(+) progenitors to ischemic muscles, impaired reparative neovascularization, and delayed perfusion recovery as compared with wild-type MNCs. Similarly, blockade of the B(2)R by systemic administration of icatibant prevented the beneficial effect of bone marrow MNC transplantation. BK-induced migration represents a novel mechanism mediating homing of circulating angiogenic progenitors. Reduction of BK sensitivity in progenitor cells from cardiovascular disease patients might contribute to impaired neovascularization after ischemic complications.

    Topics: Adrenergic beta-Agonists; Angina Pectoris; Animals; Bradykinin; Cell Movement; Cell- and Tissue-Based Therapy; Flow Cytometry; Humans; Leukocytes, Mononuclear; Mice; Mice, Knockout; Myocardial Infarction; Myocardial Ischemia; Myocardial Revascularization; Neovascularization, Physiologic; Receptor, Bradykinin B2; Stem Cell Transplantation; Stem Cells

2008
Protective effect of bradykinin antagonist Hoe-140 during in vivo myocardial ischemic-reperfusion injury in the cat.
    Regulatory peptides, 2003, Oct-15, Volume: 115, Issue:3

    The effect of icatibant (Hoe-140), a selective bradykinin receptor (B(2)) antagonist on myocardial ischemic-reperfusion injury was studied in open chest barbiturate anaesthetized cats. The left anterior descending coronary artery was occluded for 15 min, followed by 60 min of reperfusion. Saline or icatibant (200 microg/kg) was administered intravenously slowly over 2 min, 5 min before reperfusion. In the saline-treated group, myocardial ischemic-reperfusion injury was evidenced by depressed MAP, depressed peak positive and negative dP/dt and elevated left ventricular end-diastolic pressure and enhanced oxidative stress [elevated plasma thiobarbituric acid reactive substances (TBARS; a marker for lipid peroxidation), depressed myocardial GSH (reduced glutathione), superoxide dismutase (SOD), catalase] and depletion of adenosine triphosphate (ATP) along with rise in plasma creatine phosphokinase (CPK). Administration of icatibant resulted in complete hemodynamic recovery together with repletion of ATP and reduction in plasma TBARS without any significant change in myocardial SOD, catalase and GSH. The results of the present study suggest a protective role of icatibant in myocardial ischemic-reperfusion injury.

    Topics: Adenosine Triphosphate; Animals; Bradykinin; Bradykinin Receptor Antagonists; Cats; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Oxidative Stress; Protective Agents; Thiobarbituric Acid Reactive Substances; Time Factors

2003
Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers synergistically increase coronary blood flow in canine ischemic myocardium: role of bradykinin.
    Journal of the American College of Cardiology, 2002, Jul-03, Volume: 40, Issue:1

    We examined whether the combination of an angiotensin-converting enzyme (ACE) inhibitor and an angiotensin II receptor blocker (ARB) synergistically mediates coronary vasodilation and improves myocardial metabolic and contractile dysfunction in ischemic hearts.. Either an ACE inhibitor or ARB mediates coronary vasodilation in ischemic hearts.. In dogs with myocardial ischemia, we infused an ACE inhibitor (temocaprilat, 10 microg/kg/min) or ARB (RNH-6270, 10 microg/kg/min) into the coronary artery.. Perfusion pressure of the left anterior descending coronary artery was reduced from 104 +/- 8 to 42 +/- 2 mm Hg, so that coronary blood flow (CBF) decreased to one-third of the baseline value. Ten minutes after starting the infusion of temocaprilat, the cardiac bradykinin level increased (from 32 +/- 6 to 98 +/- 5 pg/ml). Coronary blood flow (29 +/- 2 to 44 +/- 3 ml/100 g/min) and the cardiac level of nitric oxide (NO) (7.8 +/- 1.9 to 17.5 +/- 3.2 microm) also increased, with these changes being attenuated by either N(omega)-nitro-L-arginine methyl ester or HOE140. RNH-6270 alone caused a modest increase in CBF (34 +/- 3 ml/100 g/min), with no increase in the cardiac NO or bradykinin levels. Both temocaprilat and RNH-6270 caused a further increase in both CBF (51 +/- 4 ml/100 g/min) and cardiac NO levels, without increasing the bradykinin level, and these changes were inhibited by HOE140. In the nonischemic heart, RNH-6270 augmented bradykinin-induced increases in CBF.. The combination of an ACE inhibitor and ARB mediates greater increases in CBF and more potent cardioprotective effects through bradykinin-dependent mechanisms than either drug alone.

    Topics: Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Bradykinin Receptor Antagonists; Coronary Circulation; Coronary Vessels; Dogs; Drug Synergism; Imidazoles; Myocardial Ischemia; NG-Nitroarginine Methyl Ester; Nitric Oxide; Receptors, Angiotensin; Tetrazoles; Thiazepines; Vasodilation

2002
Enalaprilat attenuates ischemic rises in intracellular sodium in the isolated rat heart via the bradykinin receptor.
    Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance, 2001, Volume: 3, Issue:1

    Angiotensin-converting enzyme (ACE) inhibitors have been shown to have beneficial effects on ischemic myocardium. We examined whether the ACE inhibitor, enalaprilat (EN), improves intracellular sodium homeostasis during myocardial ischemia and the relationship of this effect to bradykinin.. EN (3.2 nM) was administered to isolated rat hearts that were subjected to ischemia and reperfusion. Intracellular sodium and pH were monitored using magnetic resonance spectroscopy (MRS). The specific bradykinin B2 receptor antagonist, HOE 140 (10 nM), was administered with EN in some hearts to determine the effect of bradykinin blockade on EN-mediated effects.. EN blunted the rise in ischemic intracellular sodium, measured using MRS. With reperfusion, EN-treated hearts recovered 80% of their preischemic ventricular function, compared with negligible recover, in controls. These beneficial effects of EN were blocked when the bradykinin receptor antagonist, HOE 140, was coadministered with EN. HOE 140 also blocked EN-mediated attenuation of ischemic intracellular acidosis.. These results suggest that EN exerts beneficial effects on ischemic intracellular sodium and pH homeostasis via the bradykinin receptor. These effects of EN may provide a mechanism for the beneficial actions of this agent during ischemia.

    Topics: Animals; Bradykinin; Culture Techniques; Enalaprilat; Homeostasis; Intracellular Fluid; Magnetic Resonance Spectroscopy; Male; Myocardial Ischemia; Rats; Rats, Wistar; Receptors, Bradykinin; Sodium

2001
Angiotensin-(1-7): cardioprotective effect in myocardial ischemia/reperfusion.
    Hypertension (Dallas, Tex. : 1979), 2001, Volume: 38, Issue:3 Pt 2

    In this study we evaluate the effects of angiotensin-(1-7) on reperfusion arrhythmias in isolated rat hearts. Rat hearts were perfused according to Langendorff technique and maintained in heated (37+/-1 degrees C) and continuously gassed (95% O(2)/5% CO(2)) Krebs-Ringer solution at constant pressure (65 mm Hg). The electrical activity was recorded with an ECG (bipolar). Local ischemia was induced by coronary ligation for 15 minutes. After ischemia, hearts were reperfused for 30 minutes. Cardiac arrhythmias were defined as the presence of ventricular tachycardia and/or ventricular fibrillation after the ligation of the coronary artery was released. Angiotensin II (0.20 nmol/L, n=10) produced a significant enhancement of reperfusion arrhythmias. On the other hand, Ang-(1-7) presented in the perfusion solution (0.22 nmol/L, n=11) reduced incidence and duration of arrhythmias. The antiarrhythmogenic effects of Ang-(1-7) was blocked by the selective Ang-(1-7) antagonist A-779 (2 nmol/L, n=9) and by indomethacin pretreatment (5 mg/kg IP, n=8) but not by the bradykinin B(2) antagonist HOE 140 (100 nmol/L, n=10) or by L-NAME pretreatment (30 mg/kg IP, n=8). These results suggest that the antiarrhythmogenic effect of low concentrations of Ang-(1-7) is mediated by a specific receptor and that release of endogenous prostaglandins.by Ang-(1-7) contributes to the alleviation of reversible and/or irreversible ischemia-reperfusion injury.

    Topics: Angiotensin I; Angiotensin II; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Bradykinin; Heart Ventricles; In Vitro Techniques; Indomethacin; Male; Myocardial Contraction; Myocardial Ischemia; Myocardial Reperfusion Injury; NG-Nitroarginine Methyl Ester; Peptide Fragments; Rats; Rats, Wistar

2001
The effects of Z13752A, a combined ACE/NEP inhibitor, on responses to coronary artery occlusion; a primary protective role for bradykinin.
    British journal of pharmacology, 2000, Volume: 129, Issue:4

    The effects on the responses to coronary artery occlusion of a combined ACE/NEP inhibitor (Z13752A) were examined in anaesthetized dogs. A 1 h infusion of Z13752A (128 microgram kg(-1) min(-1) intravenously) decreased arterial blood pressure (by 11+/-3%; P<0. 05) and increased coronary blood flow (by 12+/-4%, P<0.05). There were no other significant haemodynamic changes. Z13752A inhibited both NEP and ACE enzymes both in dog plasma and in tissue (lung ACE; kidney NEP). Pressor responses to angiotensin I in vivo were inhibited and systemic vasodilator responses to bradykinin were potentiated. When the left anterior descending coronary artery was occluded for 25 min, Z13752A markedly reduced the severity of the resultant ventricular arrhythmias. No ventricular fibrillation (VF) occurred (compared to 7/16 in the controls; P<0.05), and ventricular tachycardia (VT) was reduced (VT in 2/9 dogs treated with Z13752A cp. 16/16 of controls; episodes of VT 0.2+/-0.1 c.p. 10.7+/-3.3; P<0. 05). Reperfusion of the ischaemic myocardium led to VF in all control dogs but occurred less frequently in dogs given Z13752A (survival from the combined ischaemia-reperfusion insult 67% c.p. 0% in controls; P<0.05). Z13752A reduced two other indices of ischaemia severity; epicardial ST-segment elevation and inhomogeneity of electrical activation. These protective effects of Z13752A during ischaemia and reperfusion were abolished by the administration of icatibant (0.3 mg kg(-1), i.v.) a selective antagonist of bradykinin at B(2) receptors; the ischaemic changes in dogs given both icatibant and Z13752A were similar to those in the controls. We conclude that this ACE/NEP inhibitor is effective at reducing the consequences of coronary artery occlusion in this canine model and that this protection is primarily due to potentiation of released bradykinin. British Journal of Pharmacology (2000) 129, 671 - 680

    Topics: Adrenergic beta-Antagonists; Angiotensin I; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Arrhythmias, Cardiac; Arterial Occlusive Diseases; Blood Pressure; Bradykinin; Coronary Circulation; Coronary Disease; Dogs; Dose-Response Relationship, Drug; Female; Kidney; Lung; Male; Myocardial Ischemia; Myocardial Reperfusion Injury; Neprilysin; Peptidyl-Dipeptidase A; Phenylalanine

2000
Bradykinin mediates cardiac preconditioning at a distance.
    American journal of physiology. Heart and circulatory physiology, 2000, Volume: 278, Issue:5

    Preconditioning the heart by brief coronary (CAO) or mesenteric artery occlusion (MAO) can protect against damage during subsequent prolonged CAO and reperfusion. The role of bradykinin (BK) in remote cardiac preconditioning by MAO is investigated by antagonizing the BK B(2) receptor [Hoechst 140 (HOE-140)] or simulating local BK release by mesenteric intra-arterial infusion. Anesthetized male Wistar rats (n = 6-8) were treated with HOE-140 or saline before starting the preconditioning protocol, CAO, MAO, or non-preconditioned control. Infarct size related to risk area [ratio of infarct area to area at risk (IA/AR)] was determined after 3 h of reperfusion following a 60-min CAO. IA/AR was 62 +/- 5% in controls and not affected by HOE-140 (58 +/- 6%). CAO as well as MAO significantly protected the heart (IA/AR, 37 +/- 3 and 35 +/- 5%), which was prevented by HOE-140 (IA/AR, 71 +/- 6 and 65 +/- 7%, respectively). Brief intramesenteric BK infusion mimicked MAO (IA/AR, 26 +/- 3%). Pretreatment with hexamethonium could abolish this protection (IA/AR, 67 +/- 4%). These data indicate an important role for BK in remote preconditioning by MAO. Results support the hypothesis that remote preconditioning acts through sensory nerve stimulation in the ischemic organ.

    Topics: Adrenergic beta-Antagonists; Animals; Bradykinin; Bradykinin Receptor Antagonists; Coronary Vessels; Dose-Response Relationship, Drug; Heart; Hexamethonium; Infusions, Intra-Arterial; Ischemic Preconditioning, Myocardial; Linear Models; Male; Mesenteric Arteries; Myocardial Ischemia; Myocardium; Nicotinic Antagonists; Rats; Rats, Wistar; Receptor, Bradykinin B2; Receptors, Bradykinin; Survival Rate

2000
Increased kallikrein expression protects against cardiac ischemia.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2000, Volume: 14, Issue:13

    Multiple indirect lines of evidence point at a cardioprotective role for enhanced bradykinin formation. In particular, the inhibition of angiotensin-converting enzyme, also known as kininase II, can protect against cardiac ischemia, putatively via accumulation of bradykinin. To address whether an increase in kinin formation is sufficient to protect against cardiac ischemia, we studied transgenic rats harboring the human tissue kallikrein gene TGR(hKLK1) under the control of the metallothionein promoter, which drives expression of the transgene in various organs including the heart. We subjected the isolated hearts from transgenic rats and their transgene negative littermates to ex vivo regional cardiac ischemia and reperfusion. During the experiment, the hearts were treated with either vehicle or the specific bradykinin type 2 receptor antagonist HOE 140 (10-9 M). In the transgenic rats, overflow of nucleotide breakdown products upon reperfusion was significantly less (455 +-54 nmol/min/g in transgene negative rats vs. 270+-57 nmol/min/g in the transgenic rats, P.

    Topics: Animals; Animals, Genetically Modified; Bradykinin; Bradykinin Receptor Antagonists; In Vitro Techniques; Ischemic Preconditioning, Myocardial; Kallikreins; Models, Animal; Myocardial Ischemia; Myocardial Reperfusion Injury; Purines; Rats; Rats, Sprague-Dawley; Ventricular Function, Left

2000
Cardioprotective effect of angiotensin-converting enzyme inhibition against hypoxia/reoxygenation injury in cultured rat cardiac myocytes.
    Circulation, 1999, Feb-16, Volume: 99, Issue:6

    Although ACE inhibitors can protect myocardium against ischemia/reperfusion injury, the mechanisms of this effect have not yet been characterized at the cellular level. The present study was designed to examine whether an ACE inhibitor, cilazaprilat, directly protects cardiac myocytes against hypoxia/reoxygenation (H/R) injury.. Neonatal rat cardiac myocytes in primary culture were exposed to hypoxia for 5.5 hours and subsequently reoxygenated for 1 hour. Myocyte injury was determined by the release of creatine kinase (CK). Both cilazaprilat and bradykinin significantly inhibited CK release after H/R in a dose-dependent fashion and preserved myocyte ATP content during H/R, whereas CV-11974, an angiotensin II receptor antagonist, and angiotensin II did not. The protective effect of cilazaprilat was significantly inhibited by Hoe 140 (a bradykinin B2 receptor antagonist), NG-monomethyl-L-arginine monoacetate (L-NMMA) (an NO synthase inhibitor), and methylene blue (a soluble guanylate cyclase inhibitor) but not by staurosporine (a protein kinase C inhibitor), aminoguanidine (an inhibitor of inducible NO synthase), or indomethacin (a cyclooxygenase inhibitor). Cilazaprilat significantly enhanced bradykinin production in the culture media of myocytes after 5.5 hours of hypoxia but not in that of nonmyocytes. In addition, cilazaprilat markedly enhanced the cGMP content in myocytes during hypoxia, and this augmentation in cGMP could be blunted by L-NMMA and methylene blue but not by aminoguanidine.. The present study demonstrates that cilazaprilat can directly protect myocytes against H/R injury, primarily as a result of an accumulation of bradykinin and the attendant production of NO induced by constitutive NO synthase in hypoxic myocytes in an autocrine/paracrine fashion. NO modulates guanylate cyclase and cGMP synthesis in myocytes, which may contribute to the preservation of energy metabolism and cardioprotection against H/R injury.

    Topics: Adrenergic beta-Antagonists; Angiotensin II; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Benzimidazoles; Biphenyl Compounds; Bradykinin; Cell Hypoxia; Cells, Cultured; Cilazapril; Creatine Kinase; Cyclic GMP; Cyclooxygenase Inhibitors; Enzyme Inhibitors; Guanidines; Indomethacin; Methylene Blue; Muscle Fibers, Skeletal; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Nitric Oxide; Nitric Oxide Synthase; omega-N-Methylarginine; Oxygen; Rats; Rats, Wistar; Staurosporine; Tetrazoles

1999
Role of kinins in the endothelial protective effect of ischaemic preconditioning.
    British journal of pharmacology, 1998, Volume: 123, Issue:3

    1. The aim of this study was to assess whether the protective effect of ischaemic preconditioning on endothelial function in coronary arteries of the rat involves kinins. 2. Isolated hearts of the rat were exposed to a 30-min low-flow ischaemia (flow rate of 1 ml min[-1]) followed by 20-min reperfusion, after which coronaries were precontracted with 0.1 microM U-46619, and the response to the endothelium-dependent vasodilator, 5-hydroxytryptamine (5-HT, 10 microM), compared to that of the endothelium-independent vasodilator, sodium nitroprusside (SNP, 3 microM). 3. In untreated hearts, ischaemia-reperfusion diminished selectively 5-HT-induced vasodilatation, compared with time-matched sham hearts. The vasodilatation to SNP was unaffected after ischaemia-reperfusion. Preconditioning (5 min of zero-flow ischaemia followed by 10 min reperfusion) in untreated hearts preserved the vasodilatation produced by 5-HT. 4. Blockade of B1 and B2 receptors with either 3 nM [Lys[0], Leu8, des-Arg9]-bradykinin (LLDBK) or 10 nM Hoe 140 (icatibant), respectively, (started 15 min before ischaemic preconditioning or a corresponding sham period and stopped just before the 20-min reperfusion period) had no effect on the vasodilatation produced by either 5-HT or SNP in sham hearts. Pretreatment with Hoe 140 did not block the protective effect of ischaemic preconditioning on the 5-HT vasodilatation. In contrast, LLDBK halved the protective effect of ischaemic preconditioning on endothelium-dependent vasodilatation. 5. Perfusion with either bradykinin or des-Arg9-bradykinin (1 nM) 30 min before and lasting throughout the ischaemia protected the endothelium. 6. In conclusion, ischaemic preconditioning affords protection to the endothelial function in coronary resistance arteries of the rat partly by activation of B1 receptors. Although exogenous BK perfusion can protect the endothelium, B2 receptors do not play an important role in this protection in the rat isolated heart.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Bradykinin; Bradykinin Receptor Antagonists; Endothelium, Vascular; Heart; Ischemic Preconditioning; Kinins; Male; Myocardial Ischemia; Rats; Rats, Sprague-Dawley; Vascular Resistance

1998
Preischemic bradykinin and ischaemic preconditioning in functional recovery of the globally ischaemic rat heart.
    Cardiovascular research, 1997, Volume: 33, Issue:1

    Substantial release of bradykinin has been demonstrated to occur during short periods of myocardial ischaemia in various species. The aim of the present study was to investigate the protective effect of bradykinin in ischaemia and whether bradykinin could be involved in ischaemic preconditioning in the rat heart.. Isolated, buffer-perfused hearts were subjected to 30 min of global ischaemia, followed by 30 min of reperfusion. Postischaemic functional recovery was recorded in the following groups: (1) control; (2) treatment with 0.1 microM bradykinin for 10 min before ischaemia (BK); (3) bradykinin treatment combined with pretreatment with the specific bradykinin B2-receptor antagonist, HOE 140; (4) ischaemic preconditioning by 5 min ischaemia +5 min reperfusion prior to sustained ischaemia (i.p.); and (5) ischaemic preconditioning combined with HOE 140 administration.. Postischaemic myocardial function was significantly improved in both BK and i.p. groups (developed pressure 66.9 +/- 6.8 and 67.6 +/- 7.1 mmHg, respectively, vs. 43.1 +/- 5.9 mmHg in controls, P < 0.05). Pretreatment with 1 microM HOE 140 completely abolished the effect of bradykinin, while protection achieved by i.p. was unaltered by this drug. None of the protective interventions was associated with any significant improvement in myocardial adenosine triphosphate, creatine phosphate, glycogen, lactate or glucose tissue levels, detected either at the end of ischaemia or after 30 min of reperfusion.. Bradykinin, acting via B2-receptors, can protect against postischaemic contractile dysfunction to a similar extent as i.p.. An involvement of B2-receptors in the ischaemic preconditioning phenomenon could, however, not be demonstrated.

    Topics: Adenosine Triphosphate; Animals; Bradykinin; Bradykinin Receptor Antagonists; Glucose; Glycogen; Ischemic Preconditioning, Myocardial; Lactic Acid; Male; Myocardial Contraction; Myocardial Ischemia; Myocardium; Phosphocreatine; Rats; Rats, Wistar

1997
Modification by bradykinin B2 receptor blockade of protection by pacing against ischaemia-induced arrhythmias.
    European journal of pharmacology, 1997, Jun-05, Volume: 328, Issue:1

    In dogs, rapid cardiac pacing, by way of a pacing electrode in the right ventricle, protects against ventricular arrhythmias when a coronary artery is occluded immediately after cessation of the pacing period. This represents a form of ischaemic preconditioning. The role of bradykinin in mediating the protective effects of rapid cardiac pacing in this model was investigated using a selective antagonist of bradykinin at B2 receptors (icatibant; HOE 140). In the presence of icatibant cardiac pacing (220 beats min(-1)) resulted in more severe ischaemia (as assessed by ST-segment elevation from the pacing electrode at the end of the stimulus) and to a higher incidence of ventricular arrhythmias during the pacing protocol. When the coronary artery was occluded under such conditions the antiarrhythmic protection afforded by cardiac pacing was not seen although other indices of reduced ischaemia severity (epicardial ST-segment mapping; changes in the degree of inhomogeneity of electrical activation within the ischaemic area) were not affected by icatibant treatment. These results suggest that bradykinin is an important trigger mediator involved in the protective effects of cardiac pacing. Whether this is due to the generation of endothelium-derived protective substances (such as nitric oxide and prostacyclin) or whether it results from a direct effect on B2 receptors in cardiac myocytes is unclear.

    Topics: Adrenergic beta-Antagonists; Analysis of Variance; Animals; Arrhythmias, Cardiac; Blood Pressure; Bradykinin; Bradykinin Receptor Antagonists; Cardiac Pacing, Artificial; Coronary Disease; Disease Models, Animal; Dogs; Female; Heart Rate; Ischemic Preconditioning; Male; Myocardial Ischemia; Receptor, Bradykinin B2; Ventricular Function, Left

1997
Transient ischemia inhibits nonexocytotic release of norepinephrine following sustained ischemia in rat heart: is bradykinin involved?
    Canadian journal of physiology and pharmacology, 1997, Volume: 75, Issue:6

    Previous studies have demonstrated that transient ischemia inhibits the release of norepinephrine (NE) following a sustained ischemia. However, the mechanism underlying this inhibition is unknown. Therefore, this study was designed to investigate whether bradykinin (BK) may be involved in the inhibition of NE release following ischemic preconditioning. The effects of transient ischemia, exogenous BK, and kinin receptor blockers on NE release after a prolonged ischemia were tested in the isolated rat heart preparation. Three cycles of 5-min ischemia and reperfusion resulted in the reduction of NE release from 115.3 +/- 14.5 to 51.6 +/- 9.3 pmol.g-1 (p < 0.05) after 30 min of subtotal global ischemia. This effect was not prevented by the administration of either Lys-[Leu8]-des-Arg9-BK (1 mumol.L-1), a B1 antagonist, or HOE-140 (1 mumol.L-1), a B2 antagonist. Three cycles of 5-min BK or des-Arg9-BK infusion also resulted in a dose-dependent inhibition of NE release after 30 min of ischemia. The inhibitory effects of BK (1 mumol.L-1) or des-Arg9-BK (0.5 mumol.L-1) were blocked by Lys-[Leu8]-des-Arg9-BK (1 mumol.L-1), but not by HOE-140 (1 mumol.L-1). The results show that transient ischemia and BK protect sympathetic nerve endings in the isolated rat heart. The inhibition of NE release by pretreatment with BK is mediated by the activation of B1 receptors, whereas preconditioning provided by transient ischemia may be mediated by a different, yet unknown, mechanism in the rat heart.

    Topics: Animals; Bradykinin; Heart; Kallidin; Male; Myocardial Ischemia; Myocardial Reperfusion; Norepinephrine; Rats; Rats, Wistar; Receptors, Tachykinin

1997
Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats.
    Hypertension (Dallas, Tex. : 1979), 1996, Volume: 27, Issue:1

    After transient episodes of ischemia, benefits of thrombolytic or angioplastic therapy may be limited by reperfusion injury. Angiotensin-converting enzyme inhibitors protect the heart against ischemia/reperfusion injury, an effect mediated by kinins. We examined whether the protective effect of the angiotensin-converting enzyme inhibitor ramiprilat on myocardial ischemia/reperfusion is due to kinin stimulation of prostaglandin and/or nitric oxide release. The left anterior descending coronary artery of Lewis inbred rats was occluded for 30 minutes, followed by 120 minutes of reperfusion. Immediately before reperfusion rats were treated with vehicle, ramiprilat, or the angiotensin II type 1 receptor antagonist losartan. We tested whether pretreatment with the kinin receptor antagonist Hoe 140, the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester, or the cyclooxygenase inhibitor indomethacin blocked the effect of ramiprilat on infarct size and reperfusion arrhythmias. In controls, infarct size as a percentage of the area at risk was 79 +/- 3%; ramiprilat reduced this to 49 +/- 4% (P < .001), but losartan had little effect (74 +/- 6%, P = NS). Pretreatment with Hoe 140, NG-nitro-L-arginine methyl ester, or indomethacin abolished the beneficial effect of ramiprilat. Compared with the 30-minute ischemia/120-minute reperfusion group, nonreperfused hearts with 30 minutes of ischemia had significantly smaller infarct size as a percentage of the area at risk, whereas in the 150-minute ischemia group it was significantly larger. This suggests that reperfusion caused a significant part of the myocardial injury, but it also suggests that compared with prolonged ischemia, reperfusion salvaged some of the myocardium. Ventricular arrhythmias mirrored the changes in infarct size. Thus, angiotensin-converting enzyme inhibitors protect the myocardium against ischemia/reperfusion injury and arrhythmias; these beneficial effects are mediated primarily by a kinin-prostaglandin-nitric oxide pathway, not inhibition of angiotensin II formation.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arginine; Arrhythmias, Cardiac; Bradykinin; Bradykinin Receptor Antagonists; Cyclooxygenase Inhibitors; Enzyme Inhibitors; Hemodynamics; Indomethacin; Male; Myocardial Infarction; Myocardial Ischemia; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Ramipril; Rats; Rats, Inbred Lew; Reperfusion Injury

1996
Attenuation of reperfusion arrhythmias by selective inhibition of angiotensin-converting enzyme/kininase II in the ischemic zone: mediated by endogenous bradykinin?
    Journal of cardiovascular pharmacology, 1996, Volume: 27, Issue:3

    We studied the effects of angiotensin-converting enzyme (ACE)/kininase II inhibition selectively in the ischemic zone on reperfusion arrhythmias, and the role of bradykinin versus angiotensin II (produced locally in this zone) in modulating the severity of such arrhythmias. Isolated rat hearts (n = 12 per group) were subjected to independent perfusion of left and right coronary beds. The left coronary bed received the ACE/kininase II inhibitor ramiprilat, alone or in combination with either HOE140 (bradykinin B2 receptor antagonist) or angiotensin II, before induction of regional ischemia (10 min) by discontinuation of flow to the bed. Ramiprilat (1, 10, or 100 nM) did not significantly alter the incidence of reperfusion-induced ventricular tachycardia (VT) or fibrillation (VF), but reduced the incidence of sustained VF from 83% in controls to 75, 50, and 25% (p < 0.05). The protective effects of 100 nM ramiprilat were abolished by coinfusion of HOE140 (10 or 100 nM) but not affected by coinfusion of angiotensin II (1 nM). HOE140 (10 nM), when infused alone into the left coronary bed before 7-min ischemia, increased the incidence of sustained VF from 42 to 100% (p < 0.05). Although HOE140 caused vasoconstriction in the left coronary bed when given alone or in combination with ramiprilat, its proarrhythmic effects were not due to a reduction of flow to the bed. We conclude that selective inhibition of ACE/kininase II in the ischemic zone moderately attenuates reperfusion arrhythmias and that enhanced bradykinin availability rather than reduced angiotensin II in synthesis contributes to such an effect.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Arrhythmias, Cardiac; Bradykinin; In Vitro Techniques; Male; Myocardial Ischemia; Myocardial Reperfusion Injury; Ramipril; Rats; Rats, Wistar

1996
The role of bradykinin and nitric oxide in the cardioprotective action of ACE inhibitors.
    The Annals of thoracic surgery, 1995, Volume: 60, Issue:3

    The angiotensin-converting enzyme inhibitor ramiprilat has been previously demonstrated to protect myocardium from ischemia/reperfusion injury. The objective of these investigations was to examine the roles of bradykinin, angiotensin II, and nitric oxide in the cardioprotective effects of ramiprilat.. Anesthetized, open-chest rabbits were instrumented for production of myocardial ischemia (30 minutes) and subsequent reperfusion (120 minutes), after which myocardial infarct size was measured. Animals were treated intravenously with either saline solution, ramiprilat (50 micrograms/kg), the bradykinin2 receptor antagonist HOE 140 (1 microgram/kg), ramiprilat + HOE 140, angiotensin II (2.5 ng.kg-1.min-1), the angiotensin II receptor antagonist losartan (20 mg/kg), ramiprilat + angiotensin II, the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (100 micrograms.kg-1.min-1), or ramiprilat + NG-nitro-L-arginine methyl ester.. Among all treatment groups myocardial infarct size was reduced significantly below saline control only by ramiprilat (-54%) and ramiprilat + angiotensin II (-37%). Pretreatment with HOE 140 or NG-nitro-L-arginine methyl ester abolished the cardioprotective effect of ramiprilat. Neither stimulation nor antagonism of angiotensin II receptors altered infarct size from the saline control level. Also, when isolated neonatal rat cardiomyocytes were exposed to hypoxia/reoxygenation, ramiprilat (100 mumol/L) and bradykinin (10 nmol/L) improved cell viability (approximately 60%), and the protective effect of both agents was reversed by administration of HOE 140 (10 mumol/L).. These results indicate that the in vivo cardioprotective effect of ramiprilat can be abolished by antagonizing bradykinin receptors or inhibiting nitric oxide synthase, and that the effect is not related to angiotensin II receptor activity. The potential bradykinin-sparing property of ramiprilat may promote increased bradykinin-stimulated nitric oxide production leading to cardioprotection. Part of the cardioprotective effects of ramiprilat/bradykinin/nitric oxide may occur locally as demonstrated by the in vitro results using isolated cardiomyocytes.

    Topics: Adrenergic beta-Antagonists; Amino Acid Oxidoreductases; Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Arginine; Biphenyl Compounds; Bradykinin; Bradykinin Receptor Antagonists; Heart; Imidazoles; Losartan; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion; Myocardial Reperfusion Injury; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Rabbits; Ramipril; Receptors, Angiotensin; Receptors, Bradykinin; Tetrazoles

1995
Role of bradykinin in protection of ischemic preconditioning in rabbit hearts.
    Circulation research, 1995, Volume: 77, Issue:3

    Bradykinin receptor activation has been proposed to be involved in ischemic preconditioning. In the present study, we further investigated the role of this agent in preconditioning in both isolated and in situ rabbit hearts. All hearts were subjected to 30 minutes of regional ischemia followed by reperfusion for 2 hours (in vitro hearts) and 3 hours (in situ hearts). Infarct size was measured by tetrazolium staining and expressed as a percentage of the size of the risk zone. Preconditioning in situ hearts with 5 minutes of ischemia and 10 minutes of reperfusion significantly reduced infarct size to 10.2 +/- 2.2% of the risk region (P < .0005 versus control infarct size of 36.7 +/- 2.6%). Pretreatment with HOE 140 (26 micrograms/kg), a bradykinin B2 receptor blocker, did not alter infarct size in nonpreconditioned hearts (40.6 +/- 5.3% infarction) but abolished protection from ischemic preconditioning (34.1 +/- 1.6% infarction). However, when HOE 140 was administered during the initial reflow period following 5 minutes of ischemia, protection was no longer abolished (15.6 +/- 3.9% infarction versus 13.3 +/- 3.8% without HOE 140, P = NS). Bradykinin infusion in isolated hearts mimicked preconditioning, and protection was not affected by pretreatment with the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester or the prostaglandin synthesis inhibitor indomethacin but could be completely abolished by the protein kinase C (PKC) inhibitors polymyxin B and staurosporine as well as by HOE 140. HOE 140 could not block the protection of ischemic preconditioning in isolated hearts. That failure was apparently due to the absence of blood-borne kininogens rather than autonomic nerves. When the preconditioning stimulus in the in situ model was amplified with four cycles of 5-minute ischemia/10-minute reperfusion, HOE 140 pretreatment could no longer block protection (infarct size was 10.7 +/- 3.5% versus 6.4 +/- 2.0% without HOE 140, P = NS). We propose that bradykinin receptors protect by coupling to PKC as do adenosine receptors, and blockade of either receptor will diminish the total stimulus of PKC below threshold and prevent protection. A more intense preconditioning ischemic stimulus can overcome bradykinin receptor blockade, however, by simply enhancing the amount of adenosine and possibly other agonists released.

    Topics: Animals; Arginine; Bradykinin; Female; Hemodynamics; Male; Myocardial Ischemia; NG-Nitroarginine Methyl Ester; Protein Kinase C; Rabbits

1995
Attenuation of the antiarrhythmic effects of ischaemic preconditioning by blockade of bradykinin B2 receptors.
    British journal of pharmacology, 1994, Volume: 113, Issue:4

    1. The possibility that bradykinin is involved in the pronounced antiarrhythmic effects of ischaemic preconditioning in anaesthetized mongrel dogs was examined with the use of the selective B2 antagonist, icatibant (Hoe-140). 2. Preconditioning, achieved by two 5 min occlusions of the left anterior descending coronary artery, followed 20 min later by a 25 min occlusion of the same artery resulted, during this prolonged occlusion, in less severe arrhythmias (VF 0% versus 47% in control non-preconditioned dogs), reductions in the incidence and number of episodes of ventricular tachycardia (VT) and in the number of ventricular premature beats and increased survival following reperfusion (50% versus 0% in the controls). 3. Hoe-140 was given in a dose of 300 micrograms kg-1 either before the preconditioning procedure or after preconditioning but before the prolonged occlusion. This dose of Hoe-140 had insignificant haemodynamic effects and failed to modify the increase in coronary blood flow that occurred in the circumflex coronary artery when the anterior descending branch was occluded. 4. It was difficult to precondition dogs in the presence of Hoe-140. There were more ventricular arrhythmias during the initial 5 min occlusion (44 +/- 12 versus 10 +/- 3) and a higher incidence of ventricular fibrillation (50% versus 21%) during the preconditioning procedure. There was also a more pronounced ST-elevation (recorded from epicardial electrodes) during the preconditioning occlusions in those dogs given Hoe-140. 5. In those dogs that survived to the long (25 min) occlusion, Hoe-140 prevented the antiarrhythmic effects of preconditioning (reduction in ventricular premature beats and in VT) although all the dogs survived the occlusion period. However on reperfusion, survival in the preconditioned dogs given Hoe-140 was less than in those dogs preconditioned without the B2 antagonist.6. Changes in the degree of inhomogeneity of conduction within the ischaemic area, which were markedly suppressed by preconditioning, were attenuated in those dogs preconditioned in the presence of Hoe-140.7. These results suggest that bradykinin acts as both a 'trigger' for preconditioning and as one of the mediator protective (antiarrhythmic) substances generated by the myocardium under these conditions.Since the protection afforded both by preconditioning and by local intracoronary infusions of bradykinin is markedly attenuated by an inhibitor of the L-arginine nitric oxide pathway, w

    Topics: Animals; Arrhythmias, Cardiac; Bradykinin; Bradykinin Receptor Antagonists; Cardiac Complexes, Premature; Coronary Circulation; Coronary Vessels; Dogs; Electrocardiography; Epoprostenol; Female; Hemodynamics; Male; Myocardial Ischemia; Nitric Oxide; Tachycardia, Ventricular

1994
Cardioprotective actions of bradykinin in myocardial ischemia and left ventricular hypertrophy.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 1994, Volume: 27, Issue:8

    To delineate the cardioprotective actions of bradykinin (BK) and the contribution of endogenous kinins to the cardiac effects of the ACE inhibitor ramipril, we used the specific B2 kinin receptor antagonist icatibant (HOE 140) during myocardial ischemia and left ventricular hypertrophy (LVH). In isolated working rat hearts, perfusion with ramiprilat (10 nM to 10 microM) reduced the incidence and duration of ventricular fibrillation, and improved cardiodynamics and myocardial metabolism. BK perfusion (0.1 nM to 10 nM) induced comparable cardioprotective effects. In addition, perfusion with ramiprilat (0.1 microM) markedly increased kinin outflow measured by RIA. The beneficial effects of ramiprilat and BK were abolished by the addition of the specific NO synthase inhibitor NG-nitro-L-arginine (L-NNA 1 microM) or icatibant (1 nM). Similar results were obtained in dogs, rabbits and rats with myocardial infarction induced by ligation of the left descending coronary artery. The influence of the icatibant on the antihypertrophic effect of ramipril and BK in the LVH was investigated in rats made hypertensive by aortic banding. Ramipril at the antihypertensive dose of 1 mg kg-1 day-1 for 6 weeks prevented the increase in blood pressure and the development of LVH. The lower non-antihypertensive dose of ramipril (10 micrograms kg-1 day-1 for 6 weeks) had no effect on the increase in blood pressure or on plasma ACE activity but also prevented LVH after aortic banding. The antihypertrophic effect of the higher and the lower dose of ramipril as well as the antihypertensive action of the higher dose of ramipril were abolished by coadministration of the icatibant.(ABSTRACT TRUNCATED AT 250 WORDS)

    Topics: Animals; Arginine; Bradykinin; Dogs; Endothelium, Vascular; Humans; Hypertrophy, Left Ventricular; Myocardial Ischemia; Nitroarginine; Ramipril; Rats

1994
The potential antiarrhythmic effects of exogenous and endogenous bradykinin in the ischaemic rat heart in vivo.
    Coronary artery disease, 1994, Volume: 5, Issue:6

    Recent studies have shown that bradykinin decreases the incidence of ischaemic arrhythmias in dogs and may also mediate the antiarrhythmic effects of preconditioning in this species. We investigated the effects of exogenously administered bradykinin on the severity of ischemic arrhythmias and the role of endogenously released bradykinin, acting on B2-receptors, in preconditioning in anaesthetized rats.. In protocol 1, male rats were subjected to a single 30 min occlusion of the left main coronary artery and received left ventricular infusions of bradykinin (30 ng to 10 micrograms/kg/min) or saline. In protocol 2, rats were pretreated with the B2-receptor antagonist HOE 140 (40 and 400 micrograms/kg intravenous bolus) 10 min before coronary artery occlusion. In protocol 3, rats were preconditioned by a 3 min coronary occlusion followed by 10 min of reperfusion before a sustained 30 min occlusion. Saline or HOE 140 was given 10 min before the preconditioning protocol. In all groups, the number and severity of ventricular arrhythmias were determined during the 30 min coronary occlusion.. In protocol 1, none of the doses of bradykinin had any significant effect on the total number of ventricular ectopic beats (1512 +/- 252 in saline-treated controls versus 1337 +/- 302 with the highest dose of bradykinin tested) or on the incidence of ventricular tachycardia or ventricular fibrillation. The two higher doses of bradykinin (1 and 10 micrograms kg/min) caused a reduction in blood pressure soon after infusion began, although this was not maintained for the duration of the experiment. In protocol 2, HOE 140, in doses that produced a sustained antagonism to the depressor response to bradykinin, had no effect on either arrhythmia count or the incidence of ventricular fibrillation in rats subjected to a single 30 min coronary occlusion. In protocol 3, a 3 min preconditioning occlusion in saline-treated rats reduced arrhythmia counts from 1046 +/- 196 in non-preconditioned rats to 76 +/- 44 in preconditioned rats, and reduced the incidences of ventricular tachycardia and ventricular fibrillation from 100 to 50% and from 75 to 7%, respectively. Neither dose of HOE 140 tested reversed these antiarrhythmic effects of preconditioning.. These results suggest that bradykinin is not protective against ischaemic arrhythmias in rats in vivo, whether given exogenously or released endogenously. Furthermore, in contrast to other species, bradykinin does not appear to play a role in the antiarrhythmic effect of ischaemic preconditioning.

    Topics: Adrenergic beta-Antagonists; Animals; Arrhythmias, Cardiac; Blood Pressure; Bradykinin; Dose-Response Relationship, Drug; Heart Rate; Male; Myocardial Ischemia; Rats; Rats, Sprague-Dawley; Tachycardia, Ventricular; Ventricular Fibrillation

1994
Role of bradykinin in myocardial preconditioning.
    The Journal of pharmacology and experimental therapeutics, 1994, Volume: 270, Issue:2

    The role of bradykinin in the cardioprotective action of ischemic preconditioning was investigated in an anesthetized, open-chest rabbit model of acute coronary occlusion. A branch of the left main coronary artery was reversibly ligated to produce ischemia followed by reperfusion, after which the degree of myocardial necrosis (infarct size as a percent of area at risk) was assessed by tetrazolium staining. Before 30 min of coronary occlusion, rabbits received either ischemic preconditioning (5 min occlusion followed by 10 min reperfusion), no preconditioning, H-D-Arg-Arg-Pro-Hyp-Gly-Thi-Ser-D-Tic-Oic-Arg-OH (HOE 140) i.v. (bradykinin receptor antagonist, 1 micrograms/kg) plus preconditioning, HOE 140 alone, a 5-min intra-atrial bradykinin infusion (250 micrograms/kg/min) followed by a 10-min recovery period or HOE 140 plus bradykinin infusion with 10 min recovery. Systemic hemodynamic responses were similar between treatment groups except that both bradykinin infusion groups had a significantly depressed rate of left ventricular pressure development (LV+dP/dtmax) after the 10-min recovery period. Preconditioning reduced infarct size significantly (12 +/- 2%, compared to non-preconditioned controls at 41 +/- 6%), whereas pretreatment with HOE 140 abolished the cardioprotective effect (41 +/- 4%). In addition, bradykinin infusion reduced infarct size significantly (16 +/- 1%), an effect which was also prevented by HOE 140 (41 +/- 5%). HOE 140 alone did not exacerbate the degree of myocardial necrosis (43 +/- 4%). Myocardial area at risk as a percentage of total left ventricular mass was not different between the six treatment groups. The results indicate that endogenously generated bradykinin may mediate the cardioprotective events associated with ischemic preconditioning.

    Topics: Amino Acid Sequence; Animals; Bradykinin; Female; Heart; Hemodynamics; Male; Molecular Sequence Data; Myocardial Ischemia; Myocardial Reperfusion Injury; Rabbits

1994
The possible role of angiotensin II subtype AT2 receptors in endothelial cells and isolated ischemic rat hearts.
    Journal of hypertension. Supplement : official journal of the International Society of Hypertension, 1993, Volume: 11, Issue:5

    Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Arginine; Bradykinin; Cattle; Cells, Cultured; Cyclic GMP; Endothelium, Vascular; Female; In Vitro Techniques; Male; Myocardial Ischemia; Nitric Oxide; Nitroarginine; Oligopeptides; Rats; Rats, Wistar; Receptors, Angiotensin

1993
The possible role of bradykinin in the antiischemic activity of ACE-inhibitors.
    Agents and actions. Supplements, 1992, Volume: 38 ( Pt 3)

    The ACE-inhibitor ramiprilat (40 ng/kg/min) was infused for 6 h into the left coronary artery of anesthetized dogs with ligation of the descending branch of this artery. This route of administration and the low dose were chosen to achieve local cardiac effects without affecting systemic hemodynamics. Ramiprilat significantly reduced infarct-size expressed as percentage of the area at risk. The cardioprotective effect of ramiprilat was mimicked by bradykinin and abolished by coadministration of a bradykinin antagonist. These results strongly suggest that bradykinin plays a role in the cardioprotective effect of the ACE-inhibitor ramiprilat.

    Topics: Amino Acid Sequence; Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Coronary Vessels; Dogs; Infusions, Intra-Arterial; Molecular Sequence Data; Myocardial Infarction; Myocardial Ischemia; Ramipril

1992