icatibant has been researched along with Cerebrovascular-Disorders* in 4 studies
4 other study(ies) available for icatibant and Cerebrovascular-Disorders
Article | Year |
---|---|
AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism.
In the present study we tested the hypothesis whether an angiotensin AT2 receptor-mediated stimulation of the bradykinin (BK)/nitric oxide (NO) system can account for the effects of AT1 receptor antagonism on aortic cGMP described previously in SHRSP. Adult SHRSP were treated for 4 hours with angiotensin II (ANG II) (30 ng/kg per min IV) or vehicle (0.9% NaCl I.V.). Animals were pretreated with vehicle, losartan (100 mg/kg P.O.), PD 123319 (30 mg/kg I.V.), losartan plus PD 123319, icatibant (500 microg/kg I.V.), N(G)-nitro-L-arginine methyl ester (L-NAME; 1 mg/kg I.V.), or minoxidil (3 mg/kg I.V.). Mean arterial blood pressure (MAP) was continuously monitored over the 4-hour experimental period, and plasma ANG II and aortic cGMP were measured by RIA at the end of the study. ANG II infusion over 4 hours raised MAP by about 20 mm Hg. Losartan alone or losartan plus ANG II as well as minoxidil plus ANG II markedly reduced blood pressure when compared to vehicle-treated or ANG II-treated animals, respectively. Plasma levels of ANG II were increased 2-fold by ANG II infusion alone or by ANG II in combination with icatibant, L-NAME, or minoxidil. The increase in plasma ANG II levels was even more pronounced after losartan treatment. Aortic cGMP content was significantly increased by ANG II, losartan, losartan plus ANG II, and minoxidil plus ANG II by 60%, 45%, 68%, and 52%, respectively (P<.05). The effects of ANG II and of losartan plus ANG II on aortic cGMP content were both blocked by cotreatment with the AT2 receptor antagonist PD 123319. Icatibant and L-NAME abolished the effects of ANG II on aortic cGMP. Our results demonstrate the following: (1) ANG II increases aortic cGMP by an AT2 receptor-mediated action because the effect could be prevented by an AT2 receptor antagonist; (2) the effect of ANG II was not secondary to blood pressure increase because it remained under reduction of MAP with minoxidil; (3) losartan increased aortic cGMP most likely by increasing plasma ANG II levels with a subsequent stimulation of AT2 receptors; and (4) the effects of AT2 receptor stimulation are mediated by BK and, subsequently, NO because they were abolished by B2 receptor blockade as well as by NO synthase inhibition. Topics: Angiotensin II; Animals; Aorta; Blood Pressure; Bradykinin; Bradykinin Receptor Antagonists; Cerebrovascular Disorders; Cyclic GMP; Hypertension; Imidazoles; Losartan; Male; Minoxidil; Muscle, Smooth, Vascular; NG-Nitroarginine Methyl Ester; Pyridines; Rats; Rats, Inbred SHR; Receptor, Angiotensin, Type 2; Receptors, Angiotensin; Reference Values | 1998 |
Chronic low-dose treatment with perindopril improves cardiac function in stroke-prone spontaneously hypertensive rats by potentiation of endogenous bradykinin.
We investigated the effect of chronic angiotensin-covering enzyme (ACE) inhibitor treatment on functional and biochemical cardiac parameters in stroke-prone spontaneously hypertensive rats (SHRsp). Animals were treated prenatally and, subsequently, up to the age of 20 weeks with the ACE inhibitor perindopril (0.01 and 1 mg/kg per day). The contribution of endogenous bradykinin potentiation to the actions of the ACE inhibitor was assessed by co-treatment with the bradykinin B2-receptor antagonist, icatibant (500 micrograms/kg/day s.c.), from 6 to 20 weeks of age and by measurement of myocardial prostacyclin and cyclic guanosine monophosphate (GMP) concentrations. Chronic high-dose treatment with perindopril attenuated the development of hypertension and left ventricular hypertrophy while low-dose perindopril treatment had no effect on these parameters. However, low-dose perindopril improved cardiac function of isolated perfused hearts as demonstrated by an increasing left ventricular pressure and dp/dtmax without change in heart rate. Low-dose perindopril further reduced lactate concentrations and the enzymatic activities of lactate dehydrogenase and creatine kinase in the coronary venous effluent and increased tissue concentrations of glycogen, adenosine triphosphate, and creatine kinase in the myocardium. Concomitant chronic bradykinin receptor blockade abolished all ACE inhibitor-induced effects on cardiac function and metabolism. Cardiac prostacylin concentrations were 3-fold elevated in perindopril-treated animals when compared to vehicle-treated controls, while cardiac cyclic GMP concentrations remained unchanged. Our data demonstrate that chronic ACE inhibitor treatment can improve cardiac function and metabolism independently of the antihypertensive and antihypertrophic drug actions by potentiation of endogenous bradykinin. Topics: Analysis of Variance; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Blood Pressure; Bradykinin; Bradykinin Receptor Antagonists; Cerebrovascular Disorders; Cyclic GMP; Epoprostenol; Heart; Hypertension; Hypertrophy, Left Ventricular; Indoles; Myocardium; Perindopril; Rats; Rats, Inbred SHR; Ventricular Pressure | 1995 |
Effect of low-dose treatment with perindopril on cardiac function in stroke-prone spontaneously hypertensive rats: role of bradykinin.
Angiotensin-converting enzyme (ACE) inhibitors can improve cardiac function independent of their blood pressure (BP)-lowering actions. We investigated the effect of chronic subantihypertensive ACE inhibitor treatment on functional and biochemical cardiac parameters in stroke-prone spontaneously hypertensive rats (SHRSP). Animals were treated in utero and subsequently to age 20 weeks with the ACE inhibitor perindopril (0.01 mg/kg/day). The contribution of endogenous bradykinin (BK) potentiation to the actions of the ACE inhibitor was assessed by cotreatment with the BK beta 2-receptor antagonist Hoe 140 (500 micrograms/kg/day subcutaneously, s.c.) from age 6 to 20 weeks and by measurement of myocardial prostacyclin and cyclic GMP concentrations. Chronic low-dose perindopril treatment had no effect on development of hypertension and left ventricular hypertrophy (LVH), but perindopril improved cardiac function, as demonstrated by increased LV pressure (LVP) (19.4%) and LVdp/dtmax (27.8%) but no change in heart rate (HR). The activities of lactate dehydrogenase (LDH) and creatine kinase (CK) as well as lactate concentrations in the coronary venous effluent were reduced by 39.3, 50, and 60.6%, respectively. Myocardial tissue concentrations of glycogen and the energy-rich phosphates ATP and CK were increased by 16.3, 33.1, and 28.2%, respectively. All ACE inhibitor-induced effects on cardiac function and metabolism were abolished by concomitant chronic BK receptor blockade. Cardiac prostacyclin concentrations were threefold elevated in perindopril-treated animals whereas cardiac cyclic GMP concentration remained unchanged as compared with that of controls. Our data demonstrate that chronic low-dose ACE inhibitor treatment can improve cardiac function and metabolism by potentiating endogenous BK.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 6-Ketoprostaglandin F1 alpha; Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Bradykinin; Cerebrovascular Disorders; Coronary Circulation; Creatine Kinase; Cyclic GMP; Disease Models, Animal; Glycogen; Heart; Heart Rate; Hypertension; Hypertrophy, Left Ventricular; Indoles; L-Lactate Dehydrogenase; Myocardium; Perindopril; Rats; Rats, Inbred SHR | 1994 |
Angiotensin-converting enzyme inhibition improves cardiac function. Role of bradykinin.
The effect of chronic low- and high-dose treatment with the angiotensin-converting enzyme (ACE) inhibitor ramipril (0.01 and 1 mg/kg per day) on the development of hypertension and left ventricular hypertrophy as well as on functional and biochemical alterations of the heart was studied in stroke-prone spontaneously hypertensive rats treated prenatally and subsequently up to the age of 20 weeks. The contribution of endogenous bradykinin potentiation to the ACE inhibitor actions was assessed by cotreatment of rats with the bradykinin B2-receptor antagonist Hoe 140 (500 micrograms/kg per day SC) from 6 to 20 weeks of age. High- but not low-dose ACE inhibitor treatment prevented the development of hypertension and left ventricular hypertrophy. Chronic bradykinin receptor blockade did not attenuate the antihypertensive and antihypertrophic actions of ramipril. High-dose ramipril treatment improved cardiac function, as demonstrated by an increase in left ventricular pressure (29.9%), dP/dtmax (34.9%), and coronary flow (22.1%), without a change in heart rate. The activities of lactate dehydrogenase and creatine kinase and lactate concentration in the coronary effluent were reduced by 39.3%, 55.5%, and 66.7%, respectively. Myocardial tissue concentrations of glycogen and the energy-rich phosphates ATP and creatine phosphate were increased by 31.3%, 39.9%, and 73.7%, respectively, whereas lactate was decreased by 20.8%. Chronic low-dose ACE inhibitor treatment led to a pattern of changes in cardiodynamics and cardiac metabolism similar to that observed with the high dose. All ACE inhibitor-induced effects on cardiac function and metabolism were abolished by chronic bradykinin receptor blockade.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Adenosine Triphosphate; Administration, Oral; Animals; Bradykinin; Cerebrovascular Disorders; Coronary Circulation; Creatine Kinase; Dose-Response Relationship, Drug; Female; Glycogen; Heart; Hypertension; Hypertrophy, Left Ventricular; L-Lactate Dehydrogenase; Lactates; Male; Myocardium; Phosphocreatine; Pregnancy; Ramipril; Rats; Rats, Inbred SHR; Rats, Wistar; Ventricular Pressure | 1994 |