icatibant has been researched along with Cardiac-Output--Low* in 2 studies
2 other study(ies) available for icatibant and Cardiac-Output--Low
Article | Year |
---|---|
Amlodipine promotes kinin-mediated nitric oxide production in coronary microvessels of failing human hearts.
Recently, we found that amlodipine can release nitric oxide (NO) from canine coronary microvessels, which raises the question of whether amlodipine can also promote coronary NO production in failing human hearts. The goal of this study was to define the effect of amlodipine on NO production in failing human hearts and to determine the role of kinins in the control of NO production induced by amlodipine. Six explanted human hearts with end-stage heart failure were obtained immediately at transplant surgery. Coronary microvessels were isolated as previously described, and nitrite, the stable metabolite of NO in aqueous solution, was measured using the Griess Reaction. Amlodipine (10(-10) to 10(-5) mol/L) significantly increased nitrite production in coronary microvessels in a dose-dependent manner. The increase in nitrite in response to the highest dose of amlodipine (79%) was similar in magnitude to either that of the angiotensin-converting enzyme inhibitor ramiprilat (74%) or the neutral endopeptidase inhibitors phosphoramidon (61%) and thiorphan (72%). Interestingly, the increase in nitrite production induced by amlodipine was entirely abolished by N(omega)-nitro-L-arginine methyl ester and also HOE-140 (a bradykinin-2 antagonist) and dichloroisocoumarin (a serine protease inhibitor that blocks kallikrein activity). These results indicate that amlodipine can promote coronary NO production in failing human hearts and that this effect is dependent on a kinin-mediated mechanism. Topics: Amlodipine; Angiotensin-Converting Enzyme Inhibitors; Bradykinin; Bradykinin Receptor Antagonists; Calcium Channel Blockers; Cardiac Output, Low; Coronary Vessels; Dose-Response Relationship, Drug; Glycopeptides; Humans; Metalloendopeptidases; Microcirculation; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitrites; Quinine; Ramipril; Serine Proteinase Inhibitors; Thiorphan | 1999 |
Bradykinin pathway is involved in acute hemodynamic effects of enalaprilat in dogs with heart failure.
To determine the role of the renin-angiotensin system and the bradykinin pathway in the mechanism of action of angiotensin-converting enzyme inhibitors in heart failure, the acute effects of enalaprilat (1 mg/kg) were compared with those of a renin inhibitor (ciprokiren, 1 mg/kg i.v.) in 10 chronically instrumented conscious dogs with heart failure induced by right ventricular pacing (3 wk, 240 beats/min). The effects of enalaprilat and ciprokiren on bradykinin infusion (3, 10, and 30 micrograms/min) and the effects of enalaprilat in the presence of the bradykinin B2 receptor antagonist Hoe-140 (10 micrograms/kg i.v.) were also examined. Both inhibitors significantly decreased mean aortic pressure and increased cardiac output. However, enalaprilat induced significantly greater hemodynamic effects than ciprokiren (mean aortic pressure, -13 +/- 3 vs. -6 +/- 1 mmHg; cardiac output, 0.4 +/- 0.1 vs. 0.15 +/- 0.1 l/min). Bradykinin infusion led to dose-dependent decreases in mean aortic pressure and increases in cardiac output that were not modified by pretreatment with ciprokiren but were potentiated 10-fold by enalaprilat. Hoe-140 significantly reduced the hemodynamic effects of enalaprilat. Thus endogenous bradykinin is involved in the acute hemodynamic effects of enalaprilat in experimental heart failure. Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Bradykinin; Bradykinin Receptor Antagonists; Cardiac Output, Low; Dogs; Enalaprilat; Female; Hemodynamics; Hormones; Imidazoles; Male; Renin; Time Factors | 1996 |