icaritin has been researched along with Osteoporosis* in 7 studies
7 other study(ies) available for icaritin and Osteoporosis
Article | Year |
---|---|
Icaritin ameliorates RANKL-mediated osteoclastogenesis and ovariectomy-induced osteoporosis.
A rapidly aging society and longer life expectancy are causing osteoporosis to become a global epidemic. Over the last five decades, a number of drugs aimed at reducing bone resorption or restoring bone mass have been developed, but their efficacy and safety are limited. Icaritin (ICT) is a natural compound extracted from anti-osteoporosis herb Topics: Bone Resorption; Cell Differentiation; Female; Humans; Osteogenesis; Osteoporosis; Ovariectomy; Proto-Oncogene Proteins c-fos | 2023 |
STAT-3 regulation of CXCR4 is necessary for the prenylflavonoid Icaritin to enhance mesenchymal stem cell proliferation, migration and osteogenic differentiation.
Mesenchymal stem cell (MSC) dysfunction has been implicated in the pathogenesis of osteoporosis. MSCs derived from osteoporotic subjects demonstrate significant impairment in proliferation, adhesion and chemotaxis, and osteogenic differentiation, leading to reduced functional bone-forming osteoblasts and ultimately nett bone loss and osteoporosis. Epimedium herbs and its active compound Icaritin (ICT) have been used in Chinese ethnopharmacology for the treatment of metabolic bone diseases. Using an in-vitro cell culture model, we investigated the benefits of ICT treatment in enhancing MSC proliferation, migration and osteogenic differentiation, and provide novel data to describe its mechanism of action. ICT enhances MSC proliferation, chemotaxis to stromal cell-derived factor-1 (SDF-1) and osteogenic differentiation through the activation of signal transduction activator transcription factor 3 (STAT-3), with a consequential up-regulation in the expression and activity of cysteine (C)-X-C motif chemokine receptor 4 (CXCR4). These findings provide a strong basis for future clinical studies to confirm the therapeutic potential of ICT for the prevention and treatment of osteoporosis and fragility fractures. Topics: Calcium; Cell Adhesion; Cell Differentiation; Cell Division; Cell Movement; Cells, Cultured; Core Binding Factor Alpha 1 Subunit; Drug Evaluation, Preclinical; Flavonoids; Humans; Mesenchymal Stem Cells; Osteoblasts; Osteoporosis; Phosphorylation; Promoter Regions, Genetic; Protein Processing, Post-Translational; Receptors, CXCR4; RNA Interference; RNA, Small Interfering; STAT3 Transcription Factor; Transcription, Genetic; Up-Regulation | 2018 |
A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice.
Targeting delivery system has been widely used in packaging drugs for medical therapies attributed to its high efficiency and efficacy. A Traditional Chinese Medicine (TCM) formula consisting of Herba Epimedii has previously been shown to effectively treat postmenopausal osteoporosis. We have subsequently found that icaritin, which was a flavonoid isolated from both Herba Epimedii and its serum metabolites after oral administration, inhibited the adipogenic capacity of bone mesenchymal stem cells (BMSCs) while promoted their osteogenesis. However, previous pharmacokinetic analyses have shown that icaritin had a short half-life in blood and only trace amounts of the molecule reach the bone tissue. To overcome this limitation, we developed a bone-targeting liposome containing an oligopeptide of eight aspartate residues (Asp8), which had previously been shown to specifically target the bone, encapsulating icaritin. In vivo, we found that the Asp8-icaritin-liposome enhanced bone formation in ovariectomized mice compared to an icaritin-liposome control lacking the Asp8 moiety. Through in vitro mechanistic studies we further found that icaritin inhibited adipogenesis through an Akt/GSK-3β/β-catenin signaling pathway. Taken together, our study shows that Asp8-liposome as a bone-targeting delivery system is effective to carry an osteogenic phytomolecule for facilitating and enhancing its therapeutic effects on the prevention of estrogen depletion-induced osteoporosis. Topics: Adipogenesis; Animals; Bone and Bones; Drug Delivery Systems; Drugs, Chinese Herbal; Female; Flavonoids; Liposomes; Mice, Inbred C57BL; Oligopeptides; Osteogenesis; Osteoporosis | 2018 |
Metabolic profiling of isomeric aglycones central-icaritin (c-IT) and icaritin (IT) in osteoporotic rats by UPLC-QTOF-MS.
The isomers, although of similarly chemical structures, have different pharmacological activities due to their metabolic processes in vivo. Central-icaritin (c-IT) and icaritin (IT) are isomers and major bioactive aglycones of the Herba Epimedii. In this study, we found that the anti-osteoporotic effect of c-IT was stronger than IT on bone structural changes in osteoporotic rats evaluated by Micro-μCT with the parameters of bone mineral density (BMD), bone mineral content (BMC), tissue mineral content (TMC), and tissue mineral density (TMD). c-IT treatment significantly increased the bone microarchitecture, compared with IT (p < 0.05). In order to explain their differences in anti-osteoporosis, the metabolic profiling and pathways of c-IT and IT in the plasma, bile, urine, and faeces of ovariectomized (OVX) rats were investigated by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) after oral administration of c-IT or IT (80 mg/kg). Finally, 59 metabolites of c-IT and 43 metabolites of IT were identified by elucidating their corresponding quasimolecular ions and fragment ions. IT could be quickly absorbed into blood and reached a maximum plasma concentration, and then be rapidly conversed to its glucuronidation metabolites, most of which were excreted out by urine. Interestingly, the absorbed and conjugated speeds of c-IT were slower than IT. The metabolic processes of c-IT existed enterohepatic circulation, which decreased the metabolism and excretion rate of c-IT, and prolonged the anti-osteoporosis effect. Our findings provided evidence on the difference on metabolic profiles of c-IT and IT in osteoporotic rats, which might shed new lights on improving anti-osteoporotic effects of IT and c-IT. Topics: Animals; Bile; Bone Density; Chromatography, High Pressure Liquid; Feces; Female; Flavonoids; Isomerism; Mass Spectrometry; Metabolomics; Minerals; Osteoporosis; Ovariectomy; Rats | 2015 |
Mechanism of enhanced antiosteoporosis effect of circinal-icaritin by self-assembled nanomicelles in vivo with suet oil and sodium deoxycholate.
Circinal-icaritin (CIT), one new active aglycone of Epimedium, can exert a beneficial effect on osteoporotic bone. However, its low bioavailability limits its clinical efficacy for the treatment of osteoporosis.. In this paper, suet oil (SO) was used to improve the oral bioavailability of CIT and enhance its antiosteoporosis effect and absorption. After oral administration of CIT together with SO, the CIT and SO self-assembled into nanomicelles under the action of sodium deoxycholate (DOC) by bile secretion. The antiosteoporosis effects of the CIT-SO-DOC nanomicelles were evaluated in osteoporotic rats by bone mineral density, serum biochemical markers, bone microarchitecture, bone biomechanical properties, and related protein and gene expressions. We examined the bioavailability of CIT and its nanomicelles in vivo, and subsequently the nanomicelles were verified using transmission electron microscopy. Finally, we evaluated absorption across a rat intestinal perfusion model.. Compared with CIT, in the CIT-SO groups, protein and messenger ribonucleic acid expressions of osteoprotegerin were increased, while expressions of receptor activator of nuclear factor-κB ligand in bone tissue were decreased; bone-turnover markers in serum of hydroxyproline, alkaline phosphatase, tartrate-resistant acid phosphatase 5b, and receptor activator of nuclear factor-κB ligand levels were decreased, while osteoprotegerin and osteocalcin levels were increased; and trabecular bone mass, microarchitecture, and bone biomechanical strength were enhanced. The relative bioavailabilities of CIT-SO high dosage, CIT-SO medium dosage, and CIT-SO low dosage (area under concentration-time curve [AUC]0-∞) compared with that of raw CIT high dosage, CIT medium dosage, and CIT low dosage (AUC0-∞) were 127%, 121%, and 134%, respectively. The average particle size of CIT-DOC was significantly decreased after adding SO (P<0.01), and the intestinal permeability coefficients of CIT-SO-DOC nanomicelles in the duodenum, jejunum, ileum, and colon were all significantly improved (P<0.01).. The increased antiosteoporosis effects and bioavailability of CIT-SO-DOC self-assembled nanomicelles were due to an increase in absorption of CIT by reducing the particle sizes of CIT. SO may be a practical oral carrier for antiosteoporosis drugs with low bioavailability. Topics: Animals; Bone and Bones; Bone Density Conservation Agents; Deoxycholic Acid; Epimedium; Flavonoids; Nanostructures; Oils; Osteoporosis; Plant Extracts; Rats | 2015 |
The antiosteoporotic activity of central-icaritin (CIT) on bone metabolism of ovariectomized rats.
Central-icaritin (CIT) is a flavonoid aglycone first discovered in our laboratory, which is an isomeric aglycone of icaritin (IT). We wanted to know whether CIT also had anti-osteoporosis activity. In this study, CIT was investigated in an ovariectomized rat (OVX) model. Fifty-six 6-month old female Sprague-Dawley rats were randomly assigned to sham operated group (Sham) and six OVX subgroups (n=8 each). The OVX rats were then subdivided into six groups treated with vehicle (OVX), icaritin (IT, 40 mg/kg body weight/day), estradiol valerate (EV, 100 μg/kg body weight/day) or CIT (10, 20, and 40 mg/kg body weight/day) for 12 weeks, respectively. Then, the serum biochemical parameters, bone mineral density (BMD), bone biomechanical properties, bone microarchitecture, bone immunohistochemistry and related protein and gene expressions were evaluated. In OVX rats, the increases of body weight, HOP, AKP, and TRACP5b levels, and the decreases of uterus wet weight, femurs weight, BMD, serum OPG/RANKL and OCN were significantly inhibited by CIT treatment. Micro-CT analysis results showed that CIT apparently enhanced trabecular bone compared with the OVX group (p<0.05). Total femur BMD and biomechanical strength of tibia were significantly improved (p<0.05) after 12 weeks of CIT administration. In addition, the CIT administration also significantly enhanced the OPG expression, whereas reduced the RANKL expression in femurs according to RT-PCR, western blot assays and immunohistochemical evaluation. CIT had the antiosteoporotic activity, and its antiosteoporotic effects in OVX rats may be stronger than that of IT. Topics: Animals; Biomarkers; Bone Density; Bone Density Conservation Agents; Female; Femur; Flavonoids; Osteoporosis; Ovariectomy; Rats; Rats, Sprague-Dawley; Tibia; X-Ray Microtomography | 2014 |
The beneficial effect of icaritin on osteoporotic bone is dependent on the treatment initiation timing in adult ovariectomized rats.
Epimedium-derived flavonoids (EFs) have a potential to treat established osteoporosis in postmenopausal women. However, one of the main disadvantages of the compound is the high volume and dosage during long-term administration period. Meanwhile, the beneficial effect of EFs on osteoporotic bone depends greatly on the intervention timing. Whether icaritin (ICT), an active molecular compound from EFs, can exert beneficial effect on osteoporotic bone and whether the beneficial effect is also dependent on the intervention timing remain unknown.. The objective of this study was to evaluate the effect of the early and late ICT treatment on bone turnover markers, trabecular architecture, bone remodeling, biomechanics, colony formation of bone marrow stromal cells and osteoblast, adipocyte and osteoclast-related gene expression in adult ovariectomized rats.. Eighty 9-month-old female rats (n=8/group) were sham-operated (Sham) or ovariectomized (OVX). The OVX rats were subjected to ICT treatment initiation at 1 month (early treatment) and 3 months (late treatment) post-operation, respectively. The vehicle-treated Sham and OVX rats starting at month 1 and month 3 post-operation served as the corresponding controls (Sham and OVX controls) for early and late ICT treatment, respectively. Those Sham and OVX rats sacrificed immediately before early and late ICT treatment served as the pretreatment baseline controls. Both ICT and vehicle treatments lasted for 2 months. The bone turnover markers, trabecular architecture, bone remodeling and bone biomechanical properties were analyzed with biochemistry, microCT, histomorphometry and mechanical testing, respectively. The population of bone marrow stromal cells (BMSCs) and osteoblasts were evaluated with colony formation assays, respectively. The expression levels of osteoblast, adipocyte and osteoclast-related genes in bone marrow were assessed by real-time polymerase chain reaction (PCR), respectively.. At the tissue level, early ICT treatment remarkably restored the trabecular bone mass, trabecular architecture and bone biomechanical properties towards pretreatment Sham levels, and significantly increased bone formation from pretreatment OVX level and markedly inhibited bone resorption towards pretreatment Sham level, whereas late ICT treatment failed to have any effect. At the cellular and molecular level, early ICT treatment significantly increased the number of osteoblastic colonies and the level of osteoblast-related gene expression compared to pretreatment OVX levels and remarkably decreased adipocyte and osteoclast-related gene expression towards pretreatment Sham levels. Late ICT treatment failed to have beneficial effect on any of these parameters.. ICT can exert anabolic and anti-resorptive effect on osteoporotic bone. The beneficial effect of ICT treatment is dependent on the intervention timing in established osteoporosis induced by estrogen depletion. Topics: Adipocytes; Aging; Animals; Biomarkers; Biomechanical Phenomena; Bone and Bones; Bone Resorption; Cell Differentiation; Female; Flavonoids; Gene Expression Regulation; Mesenchymal Stem Cells; Osteoblasts; Osteoclasts; Osteogenesis; Osteoporosis; Ovariectomy; Rats; Rats, Sprague-Dawley; Time Factors | 2013 |