i(3)so3-galactosylceramide and Neurodegenerative-Diseases

i(3)so3-galactosylceramide has been researched along with Neurodegenerative-Diseases* in 3 studies

Other Studies

3 other study(ies) available for i(3)so3-galactosylceramide and Neurodegenerative-Diseases

ArticleYear
MALDI mass spectrometry imaging discloses the decline of sulfoglycosphingolipid and glycerophosphoinositol species in the brain regions related to cognition in a mouse model of Alzheimer's disease.
    Talanta, 2024, Jan-01, Volume: 266, Issue:Pt 2

    Aging and neurodegenerative disease are accompanied by lipid perturbations in the brain. Understanding the changes in the contents and functional activity of lipids remains a challenge not only because of the many areas in which lipids perform bioactivities but also because of the technical limitations in identifying lipids and their metabolites. In the present study, we aimed to evaluate how brain lipids are altered in Alzheimer's disease (AD)-like pathology by using mass spectrometry imaging (MSI). The spatial distributions and relative abundances of lipids in the brains were compared between APP/PS1 mice and their age-matched wild-type (WT) mice by matrix-assisted laser desorption ionization (MALDI) MSI assays. The comparisons were correlated with the analysis using a spectrophotometric method to determine the relative contents of sulfatides in different brain regions. Significant changes of brain lipids between APP/PS1 and WT mice were identified: eight sulfoglycosphingolipid species, namely, sulfatides/sulfated hexosyl ceramides (ShexCer) and two glycerophosphoinositol (GroPIn) species, PI 36:4 and PI 38:4. The declines in the spatial distributions of these ShexCer and GroPIn species in the APP/PS1 mice brains were associated with learning- and memory-related brain regions. Compared with young WT mice, aged WT mice showed significant decreases in the levels of these ShexCer and GroPIn species. Our results provide technical clues for assessing the impact of brain lipid metabolism on the senescent and neurodegenerative brain. The decline in sulfatides and GroPIns may be crucial markers during brain senescence and AD pathology. Appropriate lipid complementation might be important potentials as a therapeutic strategy for AD.

    Topics: Alzheimer Disease; Animals; Brain; Ceramides; Cognition; Disease Models, Animal; Mice; Neurodegenerative Diseases; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Sulfates; Sulfoglycosphingolipids

2024
Sulfatide Deficiency, an Early Alzheimer's Lipidomic Signature, Causes Brain Ventricular Enlargement in the Absence of Classical Neuropathological Hallmarks.
    International journal of molecular sciences, 2022, Dec-23, Volume: 24, Issue:1

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and a decline in activities of daily life. Ventricular enlargement has been associated with worse performance on global cognitive tests and AD. Our previous studies demonstrated that brain sulfatides, myelin-enriched lipids, are dramatically reduced in subjects at the earliest clinically recognizable AD stages via an apolipoprotein E (APOE)-dependent and isoform-specific process. Herein, we provided pre-clinical evidence that sulfatide deficiency is causally associated with brain ventricular enlargement. Specifically, taking advantage of genetic mouse models of global and adult-onset sulfatide deficiency, we demonstrated that sulfatide losses cause ventricular enlargement without significantly affecting hippocampal or whole brain volumes using histological and magnetic resonance imaging approaches. Mild decreases in sulfatide content and mild increases in ventricular areas were also observed in human APOE4 compared to APOE2 knock-in mice. Finally, we provided Western blot and immunofluorescence evidence that aquaporin-4, the most prevalent aquaporin channel in the central nervous system (CNS) that provides fast water transportation and regulates cerebrospinal fluid in the ventricles, is significantly increased under sulfatide-deficient conditions, while other major brain aquaporins (e.g., aquaporin-1) are not altered. In short, we unraveled a novel and causal association between sulfatide deficiency and ventricular enlargement. Finally, we propose putative mechanisms by which sulfatide deficiency may induce ventricular enlargement.

    Topics: Alzheimer Disease; Animals; Brain; Humans; Lipidomics; Mice; Neurodegenerative Diseases; Sulfoglycosphingolipids

2022
Chronic caloric restriction attenuates a loss of sulfatide content in PGC-1α-/- mouse cortex: a potential lipidomic role of PGC-1α in neurodegeneration.
    Journal of lipid research, 2012, Volume: 53, Issue:2

    Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), a key regulator of energy metabolism and lipid homeostasis in multiple highly oxidative tissues, has been implicated in the metabolic derangements of diabetes and obesity. However, relatively less is known regarding its role in neurological functions. Using shotgun lipidomics, we investigated the lipidome of mouse cerebral cortex with generalized deficiency of PGC-1α (PGC-1α(-/-)) versus wild-type (WT) mice under standard diet and chronically calorically restricted conditions. Specific deficiency in sulfatide, a myelin-specific lipid class critically involved in maintaining neurological function, was uncovered in the cortex of PGC-1α(-/-) mice compared with WT mice at all ages examined. Chronic caloric restriction (CR) for 22 months essentially restored the sulfatide reduction in PGC-1α(-/-) mice compared with WT, but sulfatide reduction was not restored in PGC-1α(-/-) with CR for a short term (i.e., 3 months). Mechanistic studies uncovered and differentiated the biochemical mechanisms underpinning the two conditions of altered sulfatide homeostasis. The former is modulated through PGC-1α-MAL pathway, whereas the latter is under the control of LXR/RXR-apoE metabolism pathway. These results suggest a novel mechanistic role of PGC-1α in sulfatide homeostasis, provide new insights into the importance of PGC-1α in neurological functions, and indicate a potential therapeutic approach for treatment of deficient PGC-1α-induced alterations in sulfatide homeostasis.

    Topics: Animals; Apolipoproteins E; Caloric Restriction; Cerebral Cortex; Cerebroside-Sulfatase; Enzymes; Homeostasis; Liver X Receptors; Membrane Transport Proteins; Mice; Mice, Mutant Strains; Myelin and Lymphocyte-Associated Proteolipid Proteins; Myelin Proteins; Neurodegenerative Diseases; Orphan Nuclear Receptors; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Proteolipids; Retinoid X Receptors; Sulfoglycosphingolipids; Sulfotransferases; Trans-Activators; Transcription Factors

2012