hyperoside and Kidney-Calculi

hyperoside has been researched along with Kidney-Calculi* in 2 studies

Other Studies

2 other study(ies) available for hyperoside and Kidney-Calculi

ArticleYear
Hyperoside Ameliorates Renal Tubular Oxidative Damage and Calcium Oxalate Deposition in Rats through AMPK/Nrf2 Signaling Axis.
    Journal of the renin-angiotensin-aldosterone system : JRAAS, 2023, Volume: 2023

    Nephrolithiasis is a common disease that seriously affects the health and life quality of patients. Despite the reported effect of hyperoside (Hyp) against nephrolithiasis, the specific mechanism has not been clarified. Therefore, this study is aimed at investigating the effect and potential mechanism of Hyp on renal injury and calcium oxalate (CaOx) crystal deposition.. Rat and cell models of renal calculi were constructed by ethylene glycol (EG) and CaOx induction, respectively. The renal histopathological damage, CaOx crystal deposition, and renal function damage of rats were assessed by HE staining, Pizzolato staining, and biochemical detection of blood and urine parameters. MTT and crystal-cell adhesion assays were utilized to determine the activity of HK-2 cells and crystal adhesion ability, biochemical detection and enzyme-linked immunosorbent assay (ELISA) to measure the levels of oxidative stress-related substances and inflammatory factors, and western blot to test the expression levels of proteins related to the AMPK/Nrf2 signaling pathway.. Hyp can improve renal pathological and functional damage, decrease CaOx crystal deposition, and inhibit oxidative stress and inflammatory response. Such effects may be achieved by activating the AMPK/Nrf2 signaling pathway.

    Topics: AMP-Activated Protein Kinases; Animals; Calcinosis; Calcium Oxalate; Kidney; Kidney Calculi; NF-E2-Related Factor 2; Oxalates; Oxidative Stress; Rats; Signal Transduction

2023
Prophylactic effects of quercetin and hyperoside in a calcium oxalate stone forming rat model.
    Urolithiasis, 2014, Volume: 42, Issue:6

    Quercetin and hyperoside (QH) are the two main constituents of the total flavone glycosides of Flos Abelmoschus manihot, which has been prescribed for treating chronic kidney disease for decades. This study aimed to investigate the effect of QH on calcium oxalate (CaOx) formation in ethylene glycol (EG)-fed rats. Rats were divided into three groups: an untreated stone-forming group, a QH-treated stone-forming group (20 mg/kg/day) and a potassium citrate-treated stone-forming group (potassium citrate was a worldwide-recognized calculi-prophylactic medicine). Ethylene glycol (0.5 %) was administered to the rats during the last week, and vitamin D3 was force-fed to induce hyperoxaluria and kidney calcium oxalate crystal deposition. 24 h urine samples were collected before and after inducing crystal deposits. Rats were killed and both kidneys were harvested after 3 weeks. Bisected kidneys were examined under a polarized light microscope for semi-quantification of the crystal-formation. The renal tissue superoxide dismutase and catalase levels were measured by Western blot. QH and potassium citrate have the ability to alkalinize urine. The number of crystal deposits decreased significantly in the QH-treated stone-forming group as compared to the other groups. Superoxide dismutase and catalase levels also increased significantly in the QH-treated stone-forming group, as compared with the untreated stone-forming group. QH administration has an inhibitory effect on the deposition of CaOx crystal in EG-fed rats and may be effective for preventing stone-forming disease.

    Topics: Animals; Calcium Oxalate; Catalase; Disease Models, Animal; Ethylene Glycol; Kidney; Kidney Calculi; Quercetin; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Treatment Outcome

2014