hyperoside has been researched along with Heart-Failure* in 2 studies
2 other study(ies) available for hyperoside and Heart-Failure
Article | Year |
---|---|
Protective effect of hyperoside on heart failure rats via attenuating myocardial apoptosis and inducing autophagy.
Heart failure (HF) is one of the most severe heart conditions, which lacks effective therapies. Therefore, it is necessary to develop more efficient drugs for HF. In this study, we investigated the cardioprotective effects of hyperoside against the pathological progression of HF. Thoracic aortic constriction (TAC) was performed to induce HF in rats. Hyperoside treatment improved cardiac function, decreased cardiomyocyte cross-sectional area and heart weight to body weight (HW/BW) ratio in HF rats. Moreover, hyperoside administration repressed apoptosis as evidenced by changing apoptosis-related protein levels, and promoted autophagy in TAC rats and angiotensin II (AngII)-induced H9C2 cells. Inhibition of autophagy by 3-methyladenine (3-MA) attenuated the beneficial effect of hyperoside against apoptosis in H9C2 cells. In summary, these data confirm that hyperoside effectively alleviates HF via suppressing apoptosis and inducing autophagy, which provides evidence that hyperoside may serve as a promising natural drug for treating HF. Topics: Angiotensin II; Animals; Apoptosis; Autophagy; Cardiotonic Agents; Cells, Cultured; Heart Failure; Male; Myocardium; Quercetin; Rats; Rats, Wistar | 2020 |
Hyperoside protects against heart failure-induced liver fibrosis in rats.
Heart failure (HF) is an end-stage of various serious cardiovascular diseases, which causes liver injury. Hyperoside has been reported to exert protective effect on liver injury and fibrosis. However, the role and related mechanisms of hyperoside in HF-induced liver fibrosis are still unclear. In the current study, we established a model of HF via aortocaval fistula (ACF) in rats in vivo. Hyperoside treatment in ACF rats increased cardiac output, the maximum peak rate of rise/fall in left ventricular pressure (+dP/dt, -dP/dt) and LV ejection fraction (LVEF), decreased LV end-systolic pressure (LVESP), LV end-diastolic pressure (LVEDP) and LV end-systolic volume (LVESV), and reduced heart weight/body weight ratio in a dose-dependent manner. Moreover, hyperoside could attenuate liver fibrosis and injury in ACF rats, as evidenced by reduction of fibrosis area and hydroxyproline content, amelioration of edema and degeneration of liver cell vacuoles, and inhibition of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) levels. Further, α-smooth-muscle actin (α-SMA), collagen I, profibrotic factor-connective tissue growth factor (CTGF), matrix metalloproteinase-2 (MMP2) and MMP9 levels were down-regulated in hyperoside-treated ACF rats. Additionally, hyperoside inhibited the activation of TGF-β1/Smad pathway. Finally, we confirmed that hyperoside suppressed TGF-β1-mediated hepatic stellate cell activation in vitro. Collectively, hyperoside showed a suppressive role in HF-induced liver fibrosis and injury. Topics: Animals; Disease Models, Animal; Heart Failure; Hepatic Stellate Cells; Liver; Liver Cirrhosis; Male; Quercetin; Rats; Rats, Wistar | 2019 |