hyperoside has been researched along with Diabetic-Nephropathies* in 6 studies
6 other study(ies) available for hyperoside and Diabetic-Nephropathies
Article | Year |
---|---|
Hyperoside ameliorates diabetic nephropathy induced by STZ via targeting the miR-499-5p/APC axis.
Diabetic nephropathy is a serious complication of diabetes. Hyperoside has been widely reported to ameliorate diabetes-associated disease. The current study is designed to explore the mechanism of hyperoside in diabetic nephropathy. In the present study, high glucose was used to treat podocytes. Diabetic nephropathy mice models were established by high-fat feeding followed by multiple low dose injections of streptozocin. Western blot analysis was conducted for detection of extracellular matrix accumulation, inflammatory response and cell apoptosis. We found out that hyperoside improved high glucose-induced cell injury. Additionally, hyperoside prevented mice with diabetic nephropathy from diabetic symptoms and renal dysfunction. Mechanistically, hyperoside inhibited the mRNA and protein expression of APC. MiR-499-5p was found to be an upstream negative mediator of APC, and hyperoside induced the upregulation of miR-499-5p. MiR-499-5p bound with the 3' untranslated region of APC to inhibit its expression. Finally, rescue assays revealed that the suppressive effects of miR-499-5p overexpression on renal dysfunction were rescued by upregulation of APC in mice with diabetic nephropathy. In conclusion, these findings indicated that hyperoside ameliorates diabetic nephropathy via targeting the miR-499-5p/APC axis, suggesting that hyperoside may offer a potential tactic for diabetic nephropathy treatment. Topics: Adenomatous Polyposis Coli Protein; Animals; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Disease Models, Animal; Gene Expression; Male; Mice, Inbred C57BL; MicroRNAs; Molecular Targeted Therapy; Podocytes; Quercetin; Streptozocin | 2021 |
Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression.
Glomerular basement membrane (GBM) damage plays a pivotal role in pathogenesis of albuminuria in diabetic nephropathy (DN). Heparan sulfate (HS) degradation induced by podocyte heparanase is the major cause of GBM thickening and abnormal perm-selectivity. In the present study, we aimed to examine the prophylactic effect of hyperoside on proteinuria development and GBM damage in DN mouse model and the cultured mouse podocytes. Pre-treatment with hyperoside (30 mg/kg/d) for four weeks could significantly decrease albuminuria, prevent GBM damage and oxidative stress in diabetes mellitus (DM) mice. Immunofluorescence staining, Real time PCR and Western blot analysis showed that decreased HS contents and increased heparanase expression in DN mice were also significantly improved by hyperoside pre-treatment. Meanwhile, transmission electron microscope imaging showed that hyperoside significantly alleviated GBM thickening in DN mice. In addition, hyperoside pre-treatment inhibited the increased heparanase gene (HPR1) promoter activity and heparanase expression induced by high glucose or reactive oxidative species (ROS) in cultured podocytes. Our data suggested that hyperoside has a prophylactic effect on proteinuria development and GBM damage in DM mice by decreasing podocyte heparanase expression. Topics: Albuminuria; Animals; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Female; Gene Expression Regulation, Enzymologic; Glomerular Basement Membrane; Glucose; Glucuronidase; Heparitin Sulfate; Mice, Inbred C57BL; Podocytes; Promoter Regions, Genetic; Quercetin; Reactive Oxygen Species | 2017 |
Osteomeles schwerinae extracts inhibits the binding to receptors of advanced glycation end products and TGF-β1 expression in mesangial cells under diabetic conditions.
Osteomeles schwerinae C. K. Schneid. (Rosaceae, OSSC) is a medicinal plant traditionally used to treat various diseases in Asia. The chemical constituents of OSSC have an inhibitory effect on aldose reductase activity, which has been implicated in the pathogenesis of diabetic complications. However, the protective effects of the pharmacological activity and potential mechanisms in diabetic nephropathy are still not known.. In the present study, OSSC extracts and major compounds were examined for their effects on binding to the receptors of advanced glycation end products (RAGE) and on transforming growth factor-beta1 (TGF-β1) expression-related signal mechanisms in mouse glomerular mesangial cells (GMCs).. A simple, rapid and efficient method was developed for the simultaneous determination of the marker compounds in the ethanol extract of the leaves and twigs of OSSC using HPLC-diode array detector (DAD). In this study, we determined the effects of OSSC extract and hyperoside on AGE and RAGE binding, and studied the mechanism of OSSC extract effects on AGE-bovine serum albumin (BSA)-treated GMCs. GMCs overexpressing human RAGE were cultured in AGE-BSA labeled with Alexa 488, and OSSC extract. AGE/RAGE binding were measured using fluorescence (excitation 485 nm/emission 528 nm). TGF-β1 protein expression levels were determined by western blot analyses.. OSSC extracts of leaves and twigs inhibited on AGE/RAGE binding and TGF-β1 protein expression in a dose-dependent manner in GMCs. Furthermore, OSSC extracts reduced the effects on AGE-BSA-induced reactive oxidative species (ROS) formation and nuclear translocalization of transcription factor NF-κB. OSSC extracts inhibited phosphorylation of extracellular signal-regulated protein kinases1/2 (ERK1/2), p38 mitogen-activated protein kinases (p38MAPK), and IκB. Hyperoside also inhibited AGE/RAGE binding and ROS formation, and reduced TGF-β1 expression and IkB phosphorylation.. OSSC extracts and hyperoside may attenuate AGE/RAGE binding and expression of TGF-β1 by downregulating of pERK1/2, p38MAPK and IκB phosphorylations in GMCs under diabetic condition and retard the development of diabetic complications such as diabetic nephropathy. Topics: Animals; Blotting, Western; Diabetic Nephropathies; Down-Regulation; Glycation End Products, Advanced; Humans; Kidney; Mesangial Cells; Mice; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Phytotherapy; Plant Extracts; Plant Leaves; Plant Stems; Quercetin; Reactive Oxygen Species; Receptor for Advanced Glycation End Products; Rosaceae; Serum Albumin, Bovine; Signal Transduction; Transforming Growth Factor beta1 | 2016 |
Hyperoside reduces albuminuria in diabetic nephropathy at the early stage through ameliorating renal damage and podocyte injury.
Diabetic nephropathy (DN) is one of the major microvascular complications in diabetes. Podocyte injury such as slit diaphragm effacement is regarded as a determinant in the occurrence and development of albuminuria in DN. In this study, we examined the effect of hyperoside, an active flavonoid glycoside, on proteinuria and renal damage in a streptozotocin-induced DN mouse model at the early stage. The results showed that oral administration of hyperoside (30 mg/kg/day for 4 weeks could significantly decrease urinary microalbumin excretion and glomerular hyperfiltration in DN mice, but did not affect the glucose and lipid metabolism. Periodic acid-Schiff staining and transmission electron microscopy showed that glomerular mesangial matrix expansion and podocyte process effacement in DN mice were significantly improved by hyperoside. Further investigations via immunofluorescence staining, real-time reverse transcription polymerase chain reaction and Western blot analysis showed that the decreased slit diaphragm protein nephrin and podocin mRNA expression and protein levels in DN mice were restored by hyperoside treatment. Collectively, these findings demonstrated that hyperoside could decrease albuminuria at the early stage of DN by ameliorating renal damage and podocyte injury. Topics: Albuminuria; Animals; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Female; Glycosides; Intracellular Signaling Peptides and Proteins; Kidney; Membrane Proteins; Mice, Inbred C57BL; Phytotherapy; Plant Extracts; Podocytes; Quercetin | 2016 |
Hyperoside ameliorates glomerulosclerosis in diabetic nephropathy by downregulating miR-21.
The purpose of this study was to investigate the therapeutic effects of hyperoside (Hyp) on glomerulosclerosis in diabetic nephropathy and its underlying mechanisms. Blood glucose, kidney mass, and renal function of mice were measured. Renal morphology was observed using hematoxylin and eosin, periodic acid - Schiff's, and Masson's trichrome stain. Fibronectin (FN) and collagen IV (COL IV) in kidney were determined by Western blot and immunohistochemical studies. Matrix metalloproteinases (MMP)-2 and -9 and tissue inhibitors of metalloproteinase (TIMP)-1 in renal tissues were detected on both the mRNA and protein levels. miRNA expression and artificial alterations by miRNA agomir transfection were evaluated to investigate the protective mechanism of Hyp in mesangial cells. Hyp effectively improved renal function and physiologic features of db/db mice. Hyp also ameliorated glomerulosclerosis by suppressing FN, COL IV, and TIMP-1 expressions and promoting MMP-9 and MMP-2 expressions. The change in MMP-9 mRNA expression was inconsistent with that in protein levels in kidney, indicating that there was a post-transcriptional regulation. Further exploration in vitro showed that miR-21 was downregulated by Hyp, increasing expression of its target, MMP-9. These results suggest that Hyp can ameliorate glomerulosclerosis in diabetic nephropathy by downregulating miR-21 to increase expression of its target, MMP-9. Topics: Abelmoschus; Animals; Cells, Cultured; Diabetic Nephropathies; Down-Regulation; Male; Mice; Mice, Inbred C57BL; MicroRNAs; Plant Extracts; Quercetin; Random Allocation | 2016 |
Pretreatment with the total flavone glycosides of Flos Abelmoschus manihot and hyperoside prevents glomerular podocyte apoptosis in streptozotocin-induced diabetic nephropathy.
Diabetic nephropathy (DN) is an important diabetic complication, and podocyte apoptosis plays a critical role in the development of DN. In the present study, we examined the preventive effect of the total flavone glycosides of Flos Abelmoschus manihot (TFA) on urinary microalbumin and glomerular podocyte apoptosis in experimental DN rats. The preliminary oral administration of TFA (200 mg/kg/day) for 24 weeks significantly decreased the urinary microalbumin to creatinine ratio and 24-h urinary total protein in streptozotocin-induced DN rats. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay indicated glomerular cell apoptosis in DN rats was significantly improved by pretreatment with TFA. Furthermore, fluorescence-activated cell sorting and Hoechst 33342 staining suggested preincubation with hyperoside (50 and 200 μg/mL), the major active constituent of TFA, could significantly mitigate cultured podocyte apoptosis induced by the advanced glycation end-products (AGEs). Western blot analysis showed that increased caspase-3 and caspase-8 expressions induced by AGEs were also inhibited by pretreatment with hyperoside at both doses. Our results demonstrate that TFA pretreatment can decrease urinary albumin excretion in early-stage DN, which might be accomplished by preventing renal damage and podocyte apoptosis. Topics: Abelmoschus; Albuminuria; Animals; Apoptosis; Caspase Inhibitors; Creatinine; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Drugs, Chinese Herbal; Flavones; Flowers; Glycation End Products, Advanced; Glycosides; Male; Mice; Phytotherapy; Podocytes; Quercetin; Rats; Rats, Sprague-Dawley | 2012 |