hyperoside and Cardiotoxicity

hyperoside has been researched along with Cardiotoxicity* in 2 studies

Other Studies

2 other study(ies) available for hyperoside and Cardiotoxicity

ArticleYear
Hyperoside alleviates doxorubicin-induced myocardial cells apoptosis by inhibiting the apoptosis signal-regulating kinase 1/p38 pathway.
    PeerJ, 2023, Volume: 11

    Cardiotoxicity is a side effect of the anthracycline broad-spectrum anti-tumor agent, doxorubicin (DOX). Hyperoside, a flavonoid glycoside extracted from many herbs, has anti-apoptotic and anticancer properties. However, its impact on the alleviation of DOX-induced apoptosis in cardiomyocytes remains elusive.. The HL-1 cell line was treated with 100 µ M hyperoside for 1 h prior to treatment with 100 µ M hyperoside and 1 µ M DOX for 24 h. The cell counting kit-8 (CCK-8) assay was used to detect cell viability; DCFH-DA fluorescent probe was used to detect (reactive oxygen species) ROS; biochemical methods were used to detect the activity of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA); the degree of apoptosis following DOX insult was assessed using immunofluorescence staining and terminal deoxynucleotidyl transferase mediated deoxy uridine triphosphate nick end labeling (TUNEL) assay; the change in protein expression of apoptosis signal-regulating kinase 1 (ASK1), p38, and apoptosis markers was determined using western blot.. Hyperoside ameliorated DOX-induced oxidative stress in HL-1 cells, up-regulated GSH, SOD and CAT activity, reduced ROS production and inhibited MDA overproduction. Moreover, in addition to promoting HL-1 cell apoptosis, DOX administration also increased B-cell lymphoma (Bcl)-2-associated X-protein and cleaved caspase-3 protein levels and decreased Bcl-2 protein level. Hyperoside therapy, however, significantly reversed the impact of DOX on the cardiomyocytes. Mechanically, DOX treatment increased the phosphorylation of the ASK1/p38 axis whereas hyperoside treatment attenuated those changes. In a further step, hyperoside synergizes with DOX to kill MDA-MB-231 cells.. Hyperoside protects HL-1 cells from DOX-induced cardiotoxicity by inhibiting the ASK1/p38 signaling pathway. Meanwhile, hyperoside maintained the cytotoxicity of DOX in MDA-MB-231 cells.

    Topics: Apoptosis; Cardiotoxicity; Doxorubicin; Humans; MAP Kinase Kinase Kinase 5; Reactive Oxygen Species

2023
Hyperoside prevents doxorubicin-induced cardiotoxicity by inhibiting NOXs/ROS/NLRP3 inflammasome signaling pathway.
    Phytotherapy research : PTR, 2023, Volume: 37, Issue:9

    Clinical application of doxorubicin (Dox) in cancer chemotherapy is limited by its cardiotoxicity. Present study aimed to demonstrate the effect and mechanism of hyperoside in Dox-induced cardiotoxicity. C57BL/6 mice were injected with 12 mg/kg of Dox, and 1 μM Dox was exposed to primary cardiomyocytes. Cardiac function was evaluated by echocardiographic and myocardial enzyme levels. Cardiomyocyts apoptosis was analyzed by TUNEL staining and flow cytometry. Network pharmacology and molecular docking were utilized to explore potential targets of hyperoside. Protein expressions were detected by western blot and enzyme activities were determined by colorimetry. Cardiac dysfunction and cardiomyocyte apoptosis induced by Dox were attenuated by hyperoside. Mechanism of hyperoside was mainly related to "oxidative stress" pathway. Hyperoside exhibited strong binding activities with nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs, the main source of ROS in cardiomyocytes) and cyclooxygenases (COXs). Experiments proved that hyperoside suppressed the ROS generation and the elevated activities of NOXs and COXs induced by Dox. Dox also triggered the activation of NLRP3 inflammasome, which was reversed by hyperoside. Hyperoside bound to NOXs and COXs, which prevents Dox-induced cardiotoxicity by inhibiting NOXs/ROS/NLRP3 inflammasome signaling pathway. Hyperoside holds promise as a therapeutic strategy for Dox-induced cardiotoxicity.

    Topics: Animals; Apoptosis; Cardiotoxicity; Doxorubicin; Inflammasomes; Mice; Mice, Inbred C57BL; Molecular Docking Simulation; Myocytes, Cardiac; NLR Family, Pyrin Domain-Containing 3 Protein; Reactive Oxygen Species; Signal Transduction

2023