hypericum has been researched along with Parkinson-Disease* in 2 studies
2 other study(ies) available for hypericum and Parkinson-Disease
Article | Year |
---|---|
Hypericum Perforatum Hydroalcoholic Extract Mitigates Motor Dysfunction and is Neuroprotective in Intrastriatal 6-Hydroxydopamine Rat Model of Parkinson's Disease.
Parkinson's disease is the second most common neurodegenerative disorder with selective and progressive decline of nigral dopaminergic neurons. Hypericum perforatum L. (H. perforatum, St. John's wort) has been traditionally used for management of different disorders, especially mild-to-moderate depression. This study was conducted to evaluate the effect of H. perforatum extract against unilateral striatal 6-hydroxydopamine (6-OHDA) toxicity and to unmask some involved mechanisms. Intrastriatal 6-OHDA-lesioned rats were treated with H. perforatum hydroalcoholic extract at a dose of 200 mg/kg/day started 1 week pre-surgery for 1 week post-surgery. The extract attenuated apomorphine-induced rotational behavior, decreased the latency to initiate and the total time on the narrow beam task, lowered striatal level of malondialdehyde and enhanced striatal catalase activity and reduced glutathione content, normalized striatal expression of glial fibrillary acidic protein, tumor necrosis factor α with no significant effect on mitogen-activated protein kinase, lowered nigral DNA fragmentation, and prevented damage of nigral dopaminergic neurons with a higher striatal tyrosine hydroxylase immunoreactivity. These findings reveal the beneficial effect of H. perforatum via attenuation of DNA fragmentation, astrogliosis, inflammation, and oxidative stress. Topics: Animals; Apomorphine; Catalase; Corpus Striatum; Disease Models, Animal; Ethanol; Glutathione; Hypericum; Male; Malondialdehyde; Mitogen-Activated Protein Kinases; Motor Activity; Neuroprotective Agents; Oxidopamine; Parkinson Disease; Plant Extracts; Rats, Wistar; Reaction Time; Tumor Necrosis Factor-alpha; Tyrosine 3-Monooxygenase; Water | 2016 |
Neuroprotective Properties of Standardized Extracts of Hypericum perforatum on Rotenone Model of Parkinson's Disease.
Hipericum perforatum is a well-known herbal for its antidepressant property. Recently, it has been shown to have nootropic effects against neurodegenerative disorders. The aim of the present study was to evaluate the protective role of chronic administration of two standardized extract of Hypericum perforatum SHP1 rich in hyperforin (6%) and SHP2 extract poor in hyperforin (0.2%) on the neurodegeneration induced by chronic administration of rotenone in rats. Quercetin in liposomes, one active constituent, was tested in the same experimental conditions. The animals received pretreatments with SHP1 (4 mg/Kg, ip), SHP2 (4 mg/Kg, ip) or quercetin liposomes (25 and 100 mg/kg, ip) 60 min before of rotenone injection (2.5 mg/kg) for 45 days. Pretreatment of the animals with SHP1 and SHP2 efficiently halted deleterious toxic effects of rotenone, revealing normalization of catalepsy in addition to amelioration of neurochemical parameters. Also, SHP1 reduced neuronal damage, diminishing substantia nigra dopaminergic cell death caused by the pesticide, indicating benefit of neuroprotective therapy. In general, the SHP1 was more active than SHP2. In addition, SHP1 inhibited the apoptotic cascade by decreasing Bax levels. The results presented here indicate that mainly hyperforin and quercetin, may be involved in the neuroprotective action of Hypericum standardized extracts. Combination of dietary antioxidants could provide better therapeutic advantage for the management of Parkinson, and possibly other neurodegenerative disorders. Therefore H. perforatum standardized extract enriched in hyperforin, could be a better alternative for depressed elderly patients with degenerative disorders exhibiting elevated oxidative stress status. Topics: Analysis of Variance; Animals; Apoptosis Regulatory Proteins; Brain; Catalepsy; Corpus Striatum; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Fluorodeoxyglucose F18; Hypericum; Insecticides; Liposomes; Male; Maze Learning; Neurons; Neuroprotective Agents; Parkinson Disease; Phytotherapy; Positron-Emission Tomography; Quercetin; Rats; Rats, Wistar; Rotenone; Swimming | 2013 |