hyperforin has been researched along with Neoplasm-Metastasis* in 2 studies
2 other study(ies) available for hyperforin and Neoplasm-Metastasis
Article | Year |
---|---|
The potential of hypericin and hyperforin for antiadhesion therapy to prevent metastasis of parental and oxaliplatin-resistant human adenocarcinoma cells (HT-29).
Cancer cells disseminate to other parts of the body during metastasis through the process of intravasation. The hypericin and hyperforin effect has been described to understand the signal mechanisms that stimulate or stunt cancer cell sprouting to metastasis on colon adenocarcinoma cells HT-29 and its resistant form HT-29-OxR. We focused on the key points of adhesion proteins (cadherin, integrin, selectin and syndecan) and also proteins participating in or contributing to the process of cancer cell migration and adhesion through genes expression and proteins levels. Treatment effects were identified as a consequence of decreased cell adhesion, changes of expression in the adhesive proteins as well as basal membrane degradation associated with changes in the expression of matrix proteinases and in their activity. Finally, the cells affected by hypericin or hyperforin were evaluated by monitoring the cancer cell adhesion properties and proliferation processes. Supplementary Fig. (Supplemental digital content 1, http://links.lww.com/ACD/A267). Topics: Adenocarcinoma; Anthracenes; Antineoplastic Combined Chemotherapy Protocols; Cell Adhesion; Cell Movement; Colonic Neoplasms; Drug Resistance, Neoplasm; HT29 Cells; Humans; Neoplasm Metastasis; Oxaliplatin; Perylene; Phloroglucinol; Terpenes | 2018 |
Hyperforin inhibits cancer invasion and metastasis.
Hyperforin (Hyp), the major lipophilic constituent of St. John's wort, was assayed as a stable dicyclohexylammonium salt (Hyp-DCHA) for cytotoxicity and inhibition of matrix proteinases, tumor invasion, and metastasis. Hyp-DCHA triggered apoptosis-associated cytotoxic effect in both murine (C-26, B16-LU8, and TRAMP-C1) and human (HT-1080 and SK-N-BE) tumor cells; its effect varied, with B16-LU8, HT-1080, and C-26 the most sensitive (IC50 = 5 to 8 micromol/L). At these concentrations, a marked and progressive decline of growth was observed in HT-1080 cells, whereas untransformed endothelial cells were only marginally affected. Hyp-DCHA inhibited in a dose-dependent and noncompetitive manner various proteinases instrumental to extracellular matrix degradation; the activity of leukocyte elastase was inhibited the most (IC50 = 3 micromol/L), followed by cathepsin G and urokinase-type plasminogen activator, whereas that of the matrix metalloproteinases (MMPs) 2 and 9 showed an IC50 > 100 micromol/L. Nevertheless, inhibition of extracellular signal-regulated kinase 1/2 constitutive activity and reduction of MMP-2 and MMP-9 secretion was triggered by 0.5 micromol/L Hyp-DCHA to various degrees in different cell lines, the most in C-26. Inhibition of C-26 and HT-1080 cell chemoinvasion (80 and 54%, respectively) through reconstituted basement membrane was observed at these doses. Finally, in mice that received i.v. injections of C-26 or B16-LU8 cells, daily i.p. administration of Hyp-DCHA-without reaching tumor-cytotoxic blood levels-remarkably reduced inflammatory infiltration, neovascularization, lung weight (-48%), and size of experimental metastases with C-26 (-38%) and number of lung metastases with B16-LU8 (-22%), with preservation of apparently healthy and active behavior. These observations qualify Hyp-DCHA as an interesting lead compound to prevent and contrast cancer spread and metastatic growth. Topics: Adenocarcinoma; Animals; Apoptosis; Bridged Bicyclo Compounds; Cell Division; Cell Survival; Colonic Neoplasms; Cyclohexylamines; Enzyme Activation; Fibrosarcoma; Gelatinases; Humans; Lung Neoplasms; Male; Melanoma, Experimental; Mice; Mice, Inbred BALB C; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasms; Neuroblastoma; Phloroglucinol; Quaternary Ammonium Compounds; Serine Endopeptidases; Terpenes | 2004 |