hyperforin has been researched along with Adenocarcinoma* in 5 studies
5 other study(ies) available for hyperforin and Adenocarcinoma
Article | Year |
---|---|
The potential of hypericin and hyperforin for antiadhesion therapy to prevent metastasis of parental and oxaliplatin-resistant human adenocarcinoma cells (HT-29).
Cancer cells disseminate to other parts of the body during metastasis through the process of intravasation. The hypericin and hyperforin effect has been described to understand the signal mechanisms that stimulate or stunt cancer cell sprouting to metastasis on colon adenocarcinoma cells HT-29 and its resistant form HT-29-OxR. We focused on the key points of adhesion proteins (cadherin, integrin, selectin and syndecan) and also proteins participating in or contributing to the process of cancer cell migration and adhesion through genes expression and proteins levels. Treatment effects were identified as a consequence of decreased cell adhesion, changes of expression in the adhesive proteins as well as basal membrane degradation associated with changes in the expression of matrix proteinases and in their activity. Finally, the cells affected by hypericin or hyperforin were evaluated by monitoring the cancer cell adhesion properties and proliferation processes. Supplementary Fig. (Supplemental digital content 1, http://links.lww.com/ACD/A267). Topics: Adenocarcinoma; Anthracenes; Antineoplastic Combined Chemotherapy Protocols; Cell Adhesion; Cell Movement; Colonic Neoplasms; Drug Resistance, Neoplasm; HT29 Cells; Humans; Neoplasm Metastasis; Oxaliplatin; Perylene; Phloroglucinol; Terpenes | 2018 |
Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells.
Our previous results have shown that the combination of hypericin-mediated photodynamic therapy (HY-PDT) at sub-optimal dose with hyperforin (HP) (compounds of Hypericum sp.), or its stable derivative aristoforin (AR) stimulates generation of reactive oxygen species (ROS) leading to antitumour activity. This enhanced oxidative stress evoked the need for an explanation for HY accumulation in colon cancer cells pretreated with HP or AR. Generally, the therapeutic efficacy of chemotherapeutics is limited by drug resistance related to the overexpression of drug efflux transporters in tumour cells. Therefore, the impact of non-activated hypericin (HY), HY-PDT, HP and AR on cell membrane transporter systems (Multidrug resistance-associated protein 1-MRP1/ABCC1, Multidrug resistance-associated protein 2-MRP2/ABCC2, Breast cancer resistance protein - BCRP/ABCG2, P-glycoprotein-P-gp/ABCC1) and cytochrome P450 3A4 (CYP3A4) was evaluated. The different effects of the three compounds on their expression, protein level and activity was determined under specific PDT light (T0+, T6+) or dark conditions (T0- T6-). We found that HP or AR treatment affected the protein levels of MRP2 and P-gp, whereas HP decreased MRP2 and P-gp expression mostly in the T0+ and T6+ conditions, while AR decreased MRP2 in T0- and T6+. Moreover, HY-PDT treatment induced the expression of MRP1. Our data demonstrate that HP or AR treatment in light or dark PDT conditions had an inhibitory effect on the activity of individual membrane transport proteins and significantly decreased CYP3A4 activity in HT-29 cells. We found that HP or AR significantly affected intracellular accumulation of HY in HT-29 colon adenocarcinoma cells. These results suggest that HY, HP and AR might affect the efficiency of anti-cancer drugs, through interaction with membrane transporters and CYP3A4. Topics: Adenocarcinoma; Anthracenes; Blotting, Western; Cell Line, Tumor; Colonic Neoplasms; Cytochrome P-450 CYP3A; Firefly Luciferin; Flow Cytometry; Gene Expression Regulation, Neoplastic; Humans; Intracellular Space; Membrane Transport Proteins; Multidrug Resistance-Associated Protein 2; Neoplasm Proteins; Perylene; Phloroglucinol; Real-Time Polymerase Chain Reaction; Terpenes | 2016 |
The pro-apoptotic and anti-invasive effects of hypericin-mediated photodynamic therapy are enhanced by hyperforin or aristoforin in HT-29 colon adenocarcinoma cells.
Photodynamic therapy is a rapidly-developing anti-cancer approach for the treatment of various types of malignant as well as non-malignant diseases. In this study, hypericin-mediated photodynamic therapy (HY-PDT) in sub-optimal dose was combined with hyperforin (HP) or its stable derivative aristoforin (AR) in an effort to improve efficacy on the cellular level. The logic of this combination is based on the fact that both bioactive compounds naturally occur in plants of Hypericum sp. At relatively low concentrations up to 5 μM, hyperforin and aristoforin were able to stimulate onset of apoptosis in HT-29 colon adenocarcinoma cells exposed to HY-PDT, inhibit cell cycle progression, suppress expression of matrixmetalloproteinases-2/-9 together with cell adhesivity, thereby affecting the clonogenic potential of the cells. As the action of aristoforin was more pronounced, in line with our assumption, these changes were also linked in this case with hypericin accumulation and increased ROS generation leading to dissipation of mitochondrial membrane potential in a significant portion of the cells, as well as activation of caspase-3. Comparison of HT-29 cells to another colon adenocarcinoma-derived cell line HCT-116 demonstrated significant differences in sensitivity of different cell lines to PDT, however, accumulated effect of HY-PDT with HP/AR proved similar in both tested cell lines. The presented data may help to elucidate the mechanisms of action for different bioactive constituents of St. John's wort, which are increasingly recognized as being able to regulate a variety of pathobiological processes, thus possessing potential therapeutic properties. Topics: Adenocarcinoma; Anthracenes; Antineoplastic Agents; Apoptosis; Caspase 3; Cell Cycle Checkpoints; Cell Proliferation; Colonic Neoplasms; Drug Synergism; Enzyme Activation; Gene Expression Regulation, Neoplastic; HT29 Cells; Humans; Intracellular Space; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Membrane Potential, Mitochondrial; Neoplasm Invasiveness; Perylene; Phloroglucinol; Photochemotherapy; Reactive Oxygen Species; Terpenes | 2012 |
Functional induction and de-induction of P-glycoprotein by St. John's wort and its ingredients in a human colon adenocarcinoma cell line.
Continuous use of St. John's wort decreases the bioavailabilities of a variety of drugs. This interaction is attributed to the induction of cytochrome P450 3A4 and/or P-glycoprotein. In this study, we aimed to examine the chronic effects of St. John's wort and its constituents, hyperforin and hypericin, on the expression and function of P-glycoprotein in an intestinal cell line, LS 180. We also examined the acute inhibitory effect of St. John's wort on P-glycoprotein by using LLC-GA5-COL150 cells, which overexpress P-glycoprotein. St. John's wort and hyperforin but not hypericin increased the expression of P-glycoprotein in LS 180 cells. Removal of St. John's wort resulted in a restoration of P-glycoprotein level within 48 h. The content of hyperforin in St. John's wort extract was high enough to induce P-glycoprotein, suggesting that the induction of P-glycoprotein by St. John's wort can be almost attributable to hyperforin. The LS 180 cells chronically exposed to St. John's wort or hyperforin exhibited the increase in the function of P-glycoprotein assessed by the efflux of digoxin, and the activities correlated well with P-glycoprotein level. On the other hand, St. John's wort and its two constituents did not show any acute effect on P-glycoprotein-mediated transport of digoxin. St. John's wort induced P-glycoprotein in vitro that functions as a drug efflux pump. Hyperforin is considered to be a primary cause of the inductive effect of St. John's wort. Long-term administration of St. John's wort may cause clinically significant decrease in the plasma concentrations of P-glycoprotein substrates. Topics: Adenocarcinoma; Animals; Anthracenes; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport; Bridged Bicyclo Compounds; Cell Line, Tumor; Colonic Neoplasms; Digoxin; Humans; Hypericum; LLC-PK1 Cells; Perylene; Phloroglucinol; Plant Extracts; Rifampin; Swine; Terpenes; Transfection | 2005 |
Hyperforin inhibits cancer invasion and metastasis.
Hyperforin (Hyp), the major lipophilic constituent of St. John's wort, was assayed as a stable dicyclohexylammonium salt (Hyp-DCHA) for cytotoxicity and inhibition of matrix proteinases, tumor invasion, and metastasis. Hyp-DCHA triggered apoptosis-associated cytotoxic effect in both murine (C-26, B16-LU8, and TRAMP-C1) and human (HT-1080 and SK-N-BE) tumor cells; its effect varied, with B16-LU8, HT-1080, and C-26 the most sensitive (IC50 = 5 to 8 micromol/L). At these concentrations, a marked and progressive decline of growth was observed in HT-1080 cells, whereas untransformed endothelial cells were only marginally affected. Hyp-DCHA inhibited in a dose-dependent and noncompetitive manner various proteinases instrumental to extracellular matrix degradation; the activity of leukocyte elastase was inhibited the most (IC50 = 3 micromol/L), followed by cathepsin G and urokinase-type plasminogen activator, whereas that of the matrix metalloproteinases (MMPs) 2 and 9 showed an IC50 > 100 micromol/L. Nevertheless, inhibition of extracellular signal-regulated kinase 1/2 constitutive activity and reduction of MMP-2 and MMP-9 secretion was triggered by 0.5 micromol/L Hyp-DCHA to various degrees in different cell lines, the most in C-26. Inhibition of C-26 and HT-1080 cell chemoinvasion (80 and 54%, respectively) through reconstituted basement membrane was observed at these doses. Finally, in mice that received i.v. injections of C-26 or B16-LU8 cells, daily i.p. administration of Hyp-DCHA-without reaching tumor-cytotoxic blood levels-remarkably reduced inflammatory infiltration, neovascularization, lung weight (-48%), and size of experimental metastases with C-26 (-38%) and number of lung metastases with B16-LU8 (-22%), with preservation of apparently healthy and active behavior. These observations qualify Hyp-DCHA as an interesting lead compound to prevent and contrast cancer spread and metastatic growth. Topics: Adenocarcinoma; Animals; Apoptosis; Bridged Bicyclo Compounds; Cell Division; Cell Survival; Colonic Neoplasms; Cyclohexylamines; Enzyme Activation; Fibrosarcoma; Gelatinases; Humans; Lung Neoplasms; Male; Melanoma, Experimental; Mice; Mice, Inbred BALB C; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Neoplasm Invasiveness; Neoplasm Metastasis; Neoplasms; Neuroblastoma; Phloroglucinol; Quaternary Ammonium Compounds; Serine Endopeptidases; Terpenes | 2004 |