hyodeoxycholic-acid has been researched along with Disease-Models--Animal* in 6 studies
6 other study(ies) available for hyodeoxycholic-acid and Disease-Models--Animal
Article | Year |
---|---|
Alginate Alleviates Dextran Sulfate Sodium-Induced Colitis by Promoting Bifidobacterium animalis and Intestinal Hyodeoxycholic Acid Synthesis in Mice.
Alginate (ALG) is known to alleviate intestinal inflammation in inflammatory bowel disease, but its mechanism of action remains elusive. In the present study, we studied the involvement of the intestinal microbiota and bile acid (BA) metabolism in ALG-mediated anti-inflammatory effects in mice. A combination of 16S rRNA gene amplicon sequencing, shotgun metagenomic sequencing, and targeted BA metabolomic profiling was employed to investigate structural and functional differences in the colonic microbiota and BA metabolism in dextran sulfate sodium (DSS)-treated mice with or without dietary supplementation of ALG. We further explored the role of the intestinal microbiota as well as a selected ALG-enriched bacterium and BA in DSS-induced colitis. Dietary ALG alleviated DSS-mediated intestinal inflammation and enriched a small set of bacteria including Bifidobacterium animalis in the colon ( Topics: Alginates; Animals; Anti-Inflammatory Agents; Bifidobacterium animalis; Colitis; Colon; Dextran Sulfate; Disease Models, Animal; Inflammation; Inflammatory Bowel Diseases; Mice; RNA, Ribosomal, 16S | 2022 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Decrease in major secondary bile acid, hyodeoxycholic acid, was the main alteration in hepatic bile acid compositions in a hypertensive nonalcoholic fatty liver disease model.
Previous findings on hepatic bile acid compositions in nonalcoholic fatty liver disease (NAFLD) have been inconsistent and complicated. The aim of this study was to investigate the effects of steatosis on hepatic bile acid composition in a hypertensive NAFLD model without obesity and diabetes mellitus and compare hepatic bile acid composition between hypertensive rats with and without steatosis.. Two groups of hypertensive rats were studied: spontaneously hypertensive rats (SHR) fed with a normal diet (SHR-N) or a choline-deficient diet (SHR-CD). Two groups of normotensive rats were studied: Wistar Kyoto rats (WKY) fed a normal diet (WKY-N) or a choline-deficient diet (WKY-CD). Hepatic bile acid analysis was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry.. Regarding bile acid composition, the hyodeoxycholic acid (HDCA) species in the SHR-CD group showed the largest change in bile acid composition, significantly decreasing to 21.9% of that found in the SHR-N group. In the WKY-CD group, no reduction of HDCA species was observed.. We demonstrated that the decrease in HDCA species was the main alteration in a hypertensive NAFLD model. It was suggested that the decrease in HDCA species in the SHR-CD group was caused by dysbiosis. Topics: Animals; Bile Acids and Salts; Choline Deficiency; Chromatography, Liquid; Deoxycholic Acid; Disease Models, Animal; Hypertension; Liver; Male; Non-alcoholic Fatty Liver Disease; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Spectrometry, Mass, Electrospray Ionization; Tandem Mass Spectrometry | 2019 |
The inhibitory effects of cholalic acid and hyodeoxycholalic acid on the expression of TNFalpha and IL-1beta after cerebral ischemia in rats.
Previous studies have shown that Qing Kai Ling, a traditional Chinese medicine, was able to effectively prevent the inflammation from cerebral ischemia (Chen et al., 2002). The cholalic acid and hyodeoxycholalic acid (cholalic acid mixture) was major active components in Qing Kai Ling. To study the effects of cholalic acid mixture on the damage cascade of cerebral ischemia, rat model of focal cerebral ischemia was established by permanent occlusion of left middle cerebral artery. We found that the administration of cholalic acid mixture could reduce the ischemic infarct size after 24 h of ischemia, and cholalic acid mixture could be detected in cerebrospinal fluid after 2h of administration. We also found that the concentrations of tumor necrosis factor-alpha and interlukin-1beta in rat brain were significantly lower when compared to the untreated animals after 12 h and 24 h of ischemia. The concentrations of von Willebrand factor and neuron specific enolase in the plasma were remarkably decreased in cholalic acid mixture treated animals than in the untreated ones after 12h of ischemia. Our results suggested that cholalic acid mixture is able to decrease the expression of inflammation factors including tumor necrosis factor-alpha and interlukin-1beta after focal cerebral ischemia. Topics: Animals; Anti-Inflammatory Agents; Brain; Cholic Acids; Deoxycholic Acid; Disease Models, Animal; Down-Regulation; Infarction, Middle Cerebral Artery; Interleukin-1beta; Phosphopyruvate Hydratase; Rats; Rats, Sprague-Dawley; Time Factors; Tumor Necrosis Factor-alpha; von Willebrand Factor | 2009 |
A hydrophilic bile acid effects partial dissolution of cholesterol gallstones in the prairie dog.
Gallstone formation and dissolution were studied in a prairie dog model of cholesterol (CH) cholelithiasis. Gallstones were induced in 49 prairie dogs by feeding 1.2% CH in a nutritionally adequate semisynthetic diet for 6 wk (period 1). At 6 wk, gallstones had developed in all animals examined. The diets were modified by reducing the amounts of CH to 0.4, 0.2, 0.1 and 0.0% (diets 1-4); hyodeoxycholic acid (HDA; 30 mg/kg/day) was added to these diets (diets 5-8). All animals were fed the modified experimental diets for an additional 8 wk (period 2). At week 14, spontaneous gallstone dissolution had not occurred, even in the groups given no added dietary CH during period 2 (group 4). Addition of HDA to the diet tended to reduce the incidence of biliary CH crystals and the size and number of CH gallstones. Biliary CH remained elevated and the lithogenic indices in all groups were found to be greater than 1.0 at the end of the experiment. Liver and plasma CH levels tended to be lower in the groups fed HDA. In these groups, HDA and 6 beta HDA became the major biliary bile acids. This study demonstrates that HDA achieved partial dissolution of gallstones in bile supersaturated with CH. Topics: Animals; Cholelithiasis; Cholesterol, Dietary; Deoxycholic Acid; Diet; Disease Models, Animal; Male; Sciuridae | 1986 |
Hyodeoxycholic acid: a new approach to gallstone prevention.
Hyodeoxycholic acid and its isomer, 6 beta-hyodeoxycholic acid, when added to a lithogenic diet prevented the formation of cholesterol gallstones and crystals in prairie dogs. This beneficial effect occurred in the presence of bile supersaturated with cholesterol. Hyodeoxycholic acid abolished the feedback inhibition of hepatic hydroxymethylglutaryl coenzyme A reductase activity, the rate-limiting enzyme of cholesterol synthesis, and prevented elevations in serum and liver cholesterol observed in animals fed a 0.4 percent cholesterol diet. The gallbladder bile of the animals fed hyodeoxycholic acid and 6 beta-hyodeoxycholic acid contained abundant liquid crystals. This suggests that these bile acids prevented the transition of cholesterol from its liquid crystalline phase to solid crystals and stones. Topics: Animals; Bile; Cholelithiasis; Cholesterol; Cholesterol, Dietary; Crystallization; Deoxycholic Acid; Diet; Disease Models, Animal; Female; Glycodeoxycholic Acid; Hydroxymethylglutaryl CoA Reductases; Liver; Male; Microsomes, Liver; Sciuridae | 1985 |