hyodeoxycholic-acid has been researched along with Cholestasis* in 3 studies
3 other study(ies) available for hyodeoxycholic-acid and Cholestasis
Article | Year |
---|---|
Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction.
Biliary obstruction, a severe cholestatic condition, results in a huge accumulation of toxic bile acids (BA) in the liver. Glucuronidation, a conjugation reaction, is thought to protect the liver by both reducing hepatic BA toxicity and increasing their urinary elimination. The present study evaluates the contribution of each process in the overall BA detoxification by glucuronidation. Glucuronide (G), glycine, taurine conjugates, and unconjugated BAs were quantified in pre- and post-biliary stenting urine samples from 12 patients with biliary obstruction, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The same LC-MS/MS procedure was used to quantify intra- and extracellular BA-G in Hepatoma HepG2 cells. Bile acid-induced toxicity in HepG2 cells was evaluated using MTS reduction, caspase-3 and flow cytometry assays. When compared to post-treatment samples, pre-stenting urines were enriched in glucuronide-, taurine- and glycine-conjugated BAs. Biliary stenting increased the relative BA-G abundance in the urinary BA pool, and reduced the proportion of taurine- and glycine-conjugates. Lithocholic, deoxycholic and chenodeoxycholic acids were the most cytotoxic and pro-apoptotic/necrotic BAs for HepG2 cells. Other species, such as the cholic, hyocholic and hyodeoxycholic acids were nontoxic. All BA-G assayed were less toxic and displayed lower pro-apoptotic/necrotic effects than their unconjugated precursors, even if they were able to penetrate into HepG2 cells. Under severe cholestatic conditions, urinary excretion favors the elimination of amidated BAs, while glucuronidation allows the conversion of cytotoxic BAs into nontoxic derivatives. Topics: Apoptosis; Bile Acids and Salts; Chenodeoxycholic Acid; Cholestasis; Deoxycholic Acid; Female; Hep G2 Cells; Humans; Lithocholic Acid; Liver; Male | 2013 |
Bile acid N-acetylglucosaminidation. In vivo and in vitro evidence for a selective conjugation reaction of 7 beta-hydroxylated bile acids in humans.
The aim of this study was to define whether N-acetylglucosaminidation is a selective conjugation pathway of structurally related bile acids in humans. The following bile acids released enzymatically from N-acetylglucosaminides were identified: 3 alpha,7 beta-dihydroxy-5 beta-cholanoic (ursodeoxycholic), 3 beta, 7 beta-dihydroxy-5 beta-cholanoic (isoursodeoxycholic), 3 beta,7 beta-dihydroxy-5 alpha-cholanoic (alloisoursodeoxycholic), 3 beta,7 beta-dihydroxy-5-cholenoic, 3 alpha,7 beta,12 alpha-trihydroxy-5 beta-cholanoic, and 3 alpha,6 alpha,7 beta-trihydroxy-5 beta-cholanoic acids. The selectivity of conjugation was studied by administration of 0.5 g ursodeoxycholic (UDCA) or hyodeoxycholic (HDCA) acids, labeled with 13C, to patients with extrahepatic cholestasis, and of 0.5 g of 13C-labeled chenodeoxycholic acid (CDCA) to patients with extra- or intrahepatic cholestasis. After administration of [24-13C]-CDCA, labeled glucosides, and the glucuronide of CDCA were excreted in similar amounts. Labeled N-acetylglucosaminides of UDCA and isoUDCA were also formed. When [24-13C]-UDCA was given, 13C-label was detected in the N-acetylglucosaminide, the glucosides, and the glucuronide of UDCA, and in the N-acetylglucosaminide of isoUDCA. In the patient studied, 32% of the total UDCA excreted in urine was conjugated with N-acetylglucosamine. In contrast, 96% of the excreted amount of [24-13C]HDCA was glucuronidated, and 13C-labeled glucosides but no N-acetylglucosaminide were detected. The selectivity of N-acetylglucosaminidation towards bile acids containing a 7 beta-hydroxyl group was confirmed in vitro using human liver and kidney microsomes and uridine diphosphate glucose (UDP)-N-acetylglucosamine. These studies show that N-acetylglucosaminidation is a selective conjugation pathway for 7 beta-hydroxylated bile acids. Topics: Acetylglucosamine; Administration, Oral; Bile Acids and Salts; Chenodeoxycholic Acid; Cholestasis; Deoxycholic Acid; Glycosides; Humans; Hydroxylation; Liver Diseases; Mass Spectrometry; Ursodeoxycholic Acid | 1992 |
Synthesis of 13C-labeled chenodeoxycholic, hyodeoxycholic, and ursodeoxycholic acids for the study of bile acid metabolism in liver disease.
In order to study the glycosidic conjugation of chenodeoxycholic, hyodeoxycholic, and ursodeoxycholic acids in patients with cholestasis after oral administration of pharmacological amounts of the respective bile acids avoiding the application of radioactive tracers we synthesized [24-13C]chenodeoxycholic, [24-13C]hyodeoxycholic, and [24-13C]ursodeoxycholic acids. The reaction intermediates of the bile acid syntheses were characterized by infrared spectroscopy. Purity was confirmed using thin-layer chromatography as well as gas chromatography-mass spectrometry. The 13C atom excess of approximately 90% of the synthesized bile acids was the same as the 13C atom excess of the sodium [13C]cyanide used for the labeling reaction confirming the successful synthesis. After oral administration of 0.5 g of [24-13C]ursodeoxycholic acid to a healthy volunteer, 13C label was detected in the nonamidated and glycine- or taurine conjugated glucosides and the N-acetylglucosaminide of ursodeoxycholic acid in urine. This establishes ursodeoxycholic acid as the first bile acid so far known to undergo both of the recently described glycosidic conjugation reactions in humans. Topics: Administration, Oral; Carbon Isotopes; Chenodeoxycholic Acid; Cholestasis; Chromatography, Thin Layer; Deoxycholic Acid; Gas Chromatography-Mass Spectrometry; Humans; Isotope Labeling; Spectrophotometry, Infrared; Ursodeoxycholic Acid | 1991 |