hymenialdisine and Alzheimer-Disease

hymenialdisine has been researched along with Alzheimer-Disease* in 3 studies

Reviews

3 review(s) available for hymenialdisine and Alzheimer-Disease

ArticleYear
Natural and synthetic bioactive inhibitors of glycogen synthase kinase.
    European journal of medicinal chemistry, 2017, Jan-05, Volume: 125

    Glycogen synthase kinase-3 is a multi-functional serine-threonine kinase and is involved in diverse physiological processes, including metabolism, cell cycle, and gene expression by regulating a wide variety of known substrates like glycogen synthase, tau-protein and β-catenin. Aberrant GSK-3 has been involved in diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. In this review, we present an overview of the involvement of GSK-3 in various signalling pathways, resulting in a number of adverse pathologies due to its dysregulation. In addition, a detailed description of the small molecule inhibitors of GSK-3 with different mode of action discovered or specifically developed for GSK-3 has been presented. Furthermore, some clues for the future optimization of these promising molecules to develop specific drugs inhibiting GSK-3, for the treatment of associated disease conditions have also been discussed.

    Topics: Alzheimer Disease; Animals; Bipolar Disorder; Clinical Trials as Topic; Diabetes Mellitus; Drug Discovery; Glycogen Synthase Kinase 3; Humans; Models, Molecular; Neoplasms; Patents as Topic; Phosphorylation; Protein Kinase Inhibitors; Signal Transduction

2017
Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer's disease.
    Cellular and molecular life sciences : CMLS, 2017, Volume: 74, Issue:22

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects normal functions of the brain. Currently, AD is one of the leading causes of death in developed countries and the only one of the top ten diseases without a means to prevent, cure, or significantly slow down its progression. Therefore, newer therapeutic concepts are urgently needed to improve survival and the quality of life of AD patients. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neurons. However, their role in hyperphosphorylation of tau makes them potential druggable target for AD therapy. Despite the relevance of MARKs in AD pathogenesis, only a few small molecules are known to have anti-MARK activity and not much has been done to progress these compounds into therapeutic candidates. But given the diverse role of MARKs, the specificity of novel inhibitors is imperative for their successful translation from bench to bedside. In this regard, a recent co-crystal structure of MARK4 in association with a pyrazolopyrimidine-based inhibitor offers a potential scaffold for the development of more specific MARK inhibitors. In this manuscript, we review the biological role of MARKs in health and disease, and draw attention to the largely unexplored area of MARK inhibitors for AD.

    Topics: Alzheimer Disease; Antigens, Bacterial; Azepines; Bacterial Proteins; Humans; Methylene Blue; Neurons; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Pyrazoles; Pyridines; Pyrroles; Staurosporine; tau Proteins

2017
Pivotal role of glycogen synthase kinase-3: A therapeutic target for Alzheimer's disease.
    European journal of medicinal chemistry, 2016, Jan-01, Volume: 107

    Neurodegenerative diseases are among the most challenging diseases with poorly known mechanism of cause and paucity of complete cure. Out of all the neurodegenerative diseases, Alzheimer's disease is the most devastating and loosening of thinking and judging ability disease that occurs in the old age people. Many hypotheses came forth in order to explain its causes. In this review, we have enlightened Glycogen Synthase Kinase-3 which has been considered as a concrete cause for Alzheimer's disease. Plaques and Tangles (abnormal structures) are the basic suspects in damaging and killing of nerve cells wherein Glycogen Synthase Kinase-3 has a key role in the formation of these fatal accumulations. Various Glycogen Synthase Kinase-3 inhibitors have been reported to reduce the amount of amyloid-beta as well as the tau hyperphosphorylation in both neuronal and nonneuronal cells. Additionally, Glycogen Synthase Kinase-3 inhibitors have been reported to enhance the adult hippocampal neurogenesis in vivo as well as in vitro. Keeping the chemotype of the reported Glycogen Synthase Kinase-3 inhibitors in consideration, they may be grouped into natural inhibitors, inorganic metal ions, organo-synthetic, and peptide like inhibitors. On the basis of their mode of binding to the constituent enzyme, they may also be grouped as ATP, nonATP, and allosteric binding sites competitive inhibitors. ATP competitive inhibitors were known earlier inhibitors but they lack efficient selectivity. This led to find the new ways for the enzyme inhibition.

    Topics: Alzheimer Disease; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Diabetes Mellitus; Glycogen Synthase Kinase 3; Hippocampus; Humans; Hypoglycemic Agents; Inflammation; Molecular Targeted Therapy; Neoplasms; Protein Kinase Inhibitors

2016