hymecromone has been researched along with Leukemia* in 3 studies
3 other study(ies) available for hymecromone and Leukemia
Article | Year |
---|---|
Targeting hyaluronic acid production for the treatment of leukemia: treatment with 4-methylumbelliferone leads to induction of MAPK-mediated apoptosis in K562 leukemia.
The current study examined the effect of modulation of hyaluronic acid (HA) synthesis on leukemia cell survival using the hyaluronic acid synthesis inhibitor 4-methylumbelliferone (4-MU). Treatment of CML cells with 4-MU led to caspase-dependent apoptosis characterized by decreased HA production, PARP cleavage, and increased phosphorylation of p38. Addition of exogenous HA, the pan caspase inhibitor Z-VAD-FMK or the p38 inhibitor SB203580 to 4-MU treated cells was able to protect cells from apoptosis. Treatment of tumor-bearing mice with 4-MU led to a significant reduction in tumor load which was mediated through the induction of apoptosis. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Disease Models, Animal; Extracellular Space; Humans; Hyaluronic Acid; Hymecromone; K562 Cells; Leukemia; Mice; Mitogen-Activated Protein Kinases; p38 Mitogen-Activated Protein Kinases; Tumor Burden; Xenograft Model Antitumor Assays | 2013 |
Human leukemic cell lines synthesize hyaluronan to avoid senescence and resist chemotherapy.
Hyaluronan (HA) is one of the major components of the extracellular matrix. Several solid tumors produce high levels of HA, which promotes survival and multidrug resistance (MDR). HA oligomers (oHAs) can block HA effects. However, little is known about the role of HA in hematological malignancies. The aim of this work was to determine whether HA or its oligomers can modulate the proliferation of leukemia cells as well as their effect on MDR. Receptors and signaling pathways involved were also analyzed. For this purpose, the human leukemic cell lines K562 and Kv562, which are sensitive and resistant to Vincristine (VCR), respectively, were used. We demonstrated that HA induced cell proliferation in both cell lines. On K562 cells, this effect was mediated by cluster differentiation 44 (CD44) and activation of both phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, whereas on Kv562 cells, the effect was mediated by receptor for hyaluronan-mediated motility (RHAMM) and PI3K/Akt activation. The inhibition of HA synthesis by 4-methylumbelliferone (4MU) decreased cell line proliferation and sensitized Kv562 to the effect of VCR through P-glycoprotein (Pgp) inhibition, in both cases with senescence induction. Moreover, oHAs inhibited K562 proliferation mediated by CD44 as well as Akt and ERK down-regulation. Furthermore, oHAs sensitized Kv562 cells to VCR by Pgp inhibition inducing senescence. We postulate that the synthesis of HA would promote leukemia progression mediated by the triggering of the above-mentioned proliferative signals. These findings highlight the potential use of oHAs and 4MU as coadjuvant for drug-resistant leukemia. Topics: ATP Binding Cassette Transporter, Subfamily B, Member 1; Cell Proliferation; Cell Survival; Cellular Senescence; Dose-Response Relationship, Drug; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Humans; Hyaluronic Acid; Hymecromone; K562 Cells; Leukemia; Structure-Activity Relationship; Tumor Cells, Cultured; Vincristine | 2013 |
Flow cytometric measurement of cytoplasmic pH: a critical evaluation of available fluorochromes.
Three pH-sensitive fluorochromes-4-methyl-umbelliferone(4MU),2, 3-dicyano-hydroquinone (DCH), and 2',7'-bis(carboxyethyl)-5,6-carboxy fluorescein (BCECF)--were evaluated for their resolution, range, and stability of cellular fluorescence. Flow cytometric techniques for determining cytoplasmic pH (pHi) have been fully described for 4MU and DCH; BCECF has previously been used for fluorimetric estimation of pHi, and was adapted to flow cytometry. For each fluorochrome, the ratio of fluorescence intensity at two wavelengths gives a measure of pHi, which may be calibrated by obtaining the fluorescence ratios for cells suspended in buffers of varying pH in the presence of a proton ionophore. Reliable calibration proved difficult using 4MU, partly because of poor retention within cells. Both DCH and BCECF could be calibrated using a fluorescence ratio and had resolutions of 0.2 and 0.4 pH units, respectively. The fluorescence of DCH is so strongly pH dependent that there were practical difficulties in its use over a wide pH range; however, pHi measurements are possible between pH 6.0 and pH 7.5 using either DCH or BCECF. Substantial dye leakage was found for 4MU and, to a lesser extent, DCH, while BCECF was retained by cells for up to 2 hours. Despite its lower resolution BCECF had a usable range of more than 1.5 pH units and this coupled with its stable fluorescence and excitation at 488 nm rather than UV suggests a wide application. Topics: Cell Line; Cytoplasm; Flow Cytometry; Fluoresceins; Fluorescent Dyes; Humans; Hydrogen-Ion Concentration; Hydroquinones; Hymecromone; Leukemia; T-Lymphocytes | 1986 |