hydroxysafflor-yellow-a has been researched along with Hypoxia* in 5 studies
5 other study(ies) available for hydroxysafflor-yellow-a and Hypoxia
Article | Year |
---|---|
Luhong Formula and Hydroxysafflor yellow A protect cardiomyocytes by inhibiting autophagy.
Heart failure (HF) is the terminal stage of all heart diseases that is characterized by irreversible cardiomyocyte injury. Equilibrium of autophagy is essential for cardiac cell survival. The Luhong formula (LHF) has been clinically applied for decades, and has exhibited significant efficacy in improving heart function and alleviating the symptoms of angina pectoris.. To clarify the mechanism of action of LHF and one of its main constituents, hydroxysafflor yellow A (HYSA), in protecting ischemic cardiomyocytes by inhibiting autophagy.. Cell viability was detected by CCK-8 assay with LHF or HYSA pretreatment followed by hypoxic damage. Immunofluorescence of GFP-LC3-H9C2 and GFP-LC3-HeLa cells was used to observe autophagic flux. Beclin 1 and HIF1α protein expression were assessed using western blotting. LHF was orally administered to Wistar rats following myocardial infarcion. Echocardiography was performed before the rats were sacrificed; immunohistochemistry and western blotting were used to evaluate Beclin 1 and HIF1α expression in the myocardial tissue. Hematoxylin and eosin staining as well as Masson's trichrome staining were used to measure cardiac structure and myocardial fibrosis.. LHF and HYSA reversed the hypoxia-induced decrease in cell viability in vitro. LHF and HYSA induced the aggregation of GFP-LC3 puncta and reduced the expression of Beclin 1 protein in H9C2, suggesting that LHF and HYSA may inhibit autophagy activity. Pretreatment with reactive oxygen species (ROS) inducers and inhibitors revealed that LHF and HYSA inhibited autophagy by suppressing cellular ROS. Further studies demonstrated that LHF and HYSA reduced the ROS levels by inhibiting HIF1α. LHF delayed fibrosis and protected heart function in vivo in a rat model of HF following myocardial infarction. Western blotting and immunohistochemistry revealed that LHF effectively reduced the expression of Beclin 1 and HIF1α in the infarcted area of the rat heart.. These results demonstrate that hydroxysafflor yellow A is the representative bioactive compounent of Luhong Formula on regulating autophagy to protectect cardiomyocytes from hypoxia injury. LHF and HYSA inhibit cardiac autophagy by suppressing HIF1α-mediated ROS production. This study helps to further clarify the underlying mechanism of LHF and provide a scientific basis for its development as a novel cardiovascular therapeutic agent. Topics: Animals; Apoptosis; Autophagy; Beclin-1; Heart Failure; HeLa Cells; Humans; Hypoxia; Myocytes, Cardiac; Rats; Rats, Wistar; Reactive Oxygen Species | 2023 |
Cardioprotective Effect of Hydroxysafflor Yellow A via the Cardiac Permeability Transition Pore.
Myocardial ischemia damages cardiac myocytes in part via opening of the mitochondrial permeability transition pore. Preventing this pore's opening is therefore a useful therapeutic goal in treating cardiovascular disease. Hydroxysafflor yellow A has been proposed as a nontoxic alternative to other agents that modulate mitochondrial permeability transition pore opening. In this study, we proposed that hydroxysafflor yellow A prevents mitochondrial permeability transition pore formation in anoxic cardiac myocytes, and thus protects the cell from damage seen during reoxygenation of the cardiac myocytes. Experiments with hydroxysafflor yellow A transport in aerobic myocytes show that roughly 50% of the extracellular dye concentration crosses the cell membrane in a 2-h incubation. In our anoxia/reoxygenation protocol, hydroxysafflor yellow A modulated both the reduction of viability and the loss of rod-shaped cells that attend anoxia and reoxygenation. Hydroxysafflor yellow A's protective effect was similar to that of cyclosporin A, an agent known to inhibit mitochondrial permeability transition pore opening. In additional experiments, plated myocytes were loaded with calcein/MitoTracker Red, then examined for intracellular dye distribution/morphology after anoxia/reoxygenation. Hydroxysafflor yellow A-containing cells showed a cardioprotective pattern similar to that of cyclosporin A (an agent known to close the mitochondrial permeability transition pore). We conclude that hydroxysafflor yellow A can enter the cardiac myocyte and is able to modulate anoxia/reoxygenation-induced damage by interacting with the mitochondrial permeability transition pore. Topics: Animals; Cardiotonic Agents; Carthamus; Chalcone; Female; Hypoxia; Ischemia; Male; Mitochondria, Heart; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Myocytes, Cardiac; Quinones; Rats; Rats, Sprague-Dawley | 2018 |
Hydroxysafflor yellow A (HSYA) attenuates hypoxic pulmonary arterial remodelling and reverses right ventricular hypertrophy in rats.
Carthamus tinctorius L. is a traditional herbal medicine native to China with properties of promoting blood circulation and removing blood stasis, which is used for the treatment of cerebrovascular and cardiovascular diseases. Hydroxysafflor yellow A (HSYA) is the main constituent isolated from the flower of Carthamus tinctorius L. which is used as a marker substance in the quality control of Carthamus tinctorius L. in Chinese Pharmacopeia.. This study is to investigate the hypertension attenuating effect of HSYA on hypoxia-induced pulmonary artery hypertension model rats, and the possible mechanism.. The animal models were made by treating adult male Wistar rats (of the same age with the same weight of 200±25g) under hypoxia 24h per day for 9 days with or without administration of HSYA. The pulmonary arterial pressure of rats was measured after anesthetization; The right ventricular hypotrophy was evaluated by the right ventricular hypotrophy index (RVHI=[RV/(LV+S)]) as well as histomorphology assay with Hematoxylin and Eosin (HE) staining; The reducing of pulmonary artery remodelling was evaluated by histomorphology assay with HE staining; The proliferation of pulmonary artery smooth muscle cells (PASMCs) was evaluated by immunohistochemistry assays (PCNA and Ki67) and MTT assay. Cell cycle analysis and Weston-blot analysis were also performed in the study.. HSYA reduced the mean right ventricular systolic pressure (RVSP) of rats with hypoxic pulmonary arterial hypertension (HPH) in a manner of concentration dependency. It significantly inhibited the PASMCs proliferation and attenuated the remodelling of the pulmonary artery and right ventricular hypertrophy.. These findings suggested that HSYA protected against hypoxic induced pulmonary hypertension by reversing the remodelling of the pulmonary artery through inhibiting the proliferation and hypertrophy of PASMCs. This is in accordance with our previous finding that HSYA protects against the pulmonary artery vascular constriction. All these results suggest that HSYA may be a promising candidate for HPH treatment. Topics: Animals; Carthamus tinctorius; Cell Survival; Cells, Cultured; Chalcone; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Male; Myocytes, Smooth Muscle; Phytotherapy; Pulmonary Artery; Quinones; Rats, Wistar; Vascular Remodeling | 2016 |
Upregulation of heme oxygenase-1 expression by hydroxysafflor yellow A conferring protection from anoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes.
Reperfusion therapy is widely utilized for acute myocardial infarction (AMI), so ischemia/reperfusion (I/R) of the heart is frequently encountered in clinical practice. The curative effects of reperfusion therapy for AMI are favourable in most cases, but reperfusion can also cause harmful effect to cardiomyocytes. Hydroxysafflor yellow A (HSYA) is an effective therapeutic agent to alleviate I/R injury, but the mechanisms underlying this therapeutic effect are unknown.. The H9c2 cardiomyocyte cell line was incubated with or without HSYA during hypoxia, then it was reoxygenated. In the presence of HSYA, reoxygenation resulted in the upregulated expression and activity of heme oxygenase-1 (HO-1), phosphorylation of Akt, translocation of nuclear factor Nrf2, and most importantly, a reduction in A/R-induced apoptosis. An HO-1 inhibitor completely suppressed HO-1 enzymatic activity upregulated by HSYA and notably diminished the anti-apoptotic effect of HSYA. An inhibitor of PI3K, completely blocked Akt phosphorylation induced by HSYA and partly negated HSYA-induced upregulation of HO-1, translocation of nuclear factor Nrf2 and suppression of apoptosis in the H9c2 cardiomyocytes.. Our study suggests that HSYA can provide protection to H9c2 cardiomyocytes against A/R-induced apoptosis. This protective effect largely depends on the upregulation of HO-1 expression through the PI3K/Akt/Nrf2 signaling pathway. Topics: Animals; Apoptosis; Cell Line; Cells, Cultured; Chalcone; Heme Oxygenase-1; Hypoxia; Myocytes, Cardiac; Oxygen; Quinones; Rats; Up-Regulation | 2012 |
[Effect of Safflor yellow against neonatal hypoxia on expression of NOSs mRNA].
To investigate the effect of Safflor yellow on the gene expression of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) in neonatal asphyxia.. 30 minutes after SY 7 g/kg weight intraperitoneally was administered on the neonatal rats. After asphyxia for 40 minutes,the neonatal rats were reoxygenated for 48 h, and the nitric oxide synthases (NOSs) mRNA expression was assessed by semi-quantitative reverse transcription-polymerase chain reaction.. Neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) were up in hypoxia/reoxygenation (H/R) 48 h group, while both of them were down significantly in SY group, but no change was observed on endothelial nitric oxide synthase (eNOS).. The protective of SY from brain damage induced by neonatal asphyxia might be associated with expression of NOSs mRNA. Topics: Animals; Brain; Chalcone; Gene Expression; Hypoxia; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Quinones; Rats; Rats, Sprague-Dawley; RNA, Messenger | 2004 |