hydroxysafflor-yellow-a has been researched along with Hypertension--Pulmonary* in 2 studies
2 other study(ies) available for hydroxysafflor-yellow-a and Hypertension--Pulmonary
Article | Year |
---|---|
Hydroxysafflor yellow A improves established monocrotaline-induced pulmonary arterial hypertension in rats.
To evaluate the beneficial effects of hydroxysafflor yellow A (HSYA) on monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats, and to investigate the main pathophysiological mechanism of HSYA in preventing development of MCT-induced PAH.. Four groups (control, control with HSYA treatment, MCT-exposed, and MCT-exposed with HSYA treatment) were evaluated at day 28 following MCT exposure. Haemodynamic measurements, right ventricular hypertrophy, morphometry, inflammatory cytokines and oxidant expression were assessed.. HSYA significantly reduced haemodynamic changes, right ventricular hypertrophy and morphometric changes induced by exposure to MCT. HYSA also suppressed MCT-induced inflammation and oxidative stress in rat pulmonary tissue.. Experimental MCT-induced PAH may be reduced by HSYA treatment, and the mechanism may involve suppression of inflammation and oxidative stress. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Chalcone; Deoxyguanosine; Gene Expression Regulation; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Inflammation; Male; Malondialdehyde; Monocrotaline; Oxidative Stress; Quinones; Rats, Wistar; RNA, Messenger; Superoxide Dismutase; Vascular Remodeling | 2016 |
Hydroxysafflor yellow A (HSYA) attenuates hypoxic pulmonary arterial remodelling and reverses right ventricular hypertrophy in rats.
Carthamus tinctorius L. is a traditional herbal medicine native to China with properties of promoting blood circulation and removing blood stasis, which is used for the treatment of cerebrovascular and cardiovascular diseases. Hydroxysafflor yellow A (HSYA) is the main constituent isolated from the flower of Carthamus tinctorius L. which is used as a marker substance in the quality control of Carthamus tinctorius L. in Chinese Pharmacopeia.. This study is to investigate the hypertension attenuating effect of HSYA on hypoxia-induced pulmonary artery hypertension model rats, and the possible mechanism.. The animal models were made by treating adult male Wistar rats (of the same age with the same weight of 200±25g) under hypoxia 24h per day for 9 days with or without administration of HSYA. The pulmonary arterial pressure of rats was measured after anesthetization; The right ventricular hypotrophy was evaluated by the right ventricular hypotrophy index (RVHI=[RV/(LV+S)]) as well as histomorphology assay with Hematoxylin and Eosin (HE) staining; The reducing of pulmonary artery remodelling was evaluated by histomorphology assay with HE staining; The proliferation of pulmonary artery smooth muscle cells (PASMCs) was evaluated by immunohistochemistry assays (PCNA and Ki67) and MTT assay. Cell cycle analysis and Weston-blot analysis were also performed in the study.. HSYA reduced the mean right ventricular systolic pressure (RVSP) of rats with hypoxic pulmonary arterial hypertension (HPH) in a manner of concentration dependency. It significantly inhibited the PASMCs proliferation and attenuated the remodelling of the pulmonary artery and right ventricular hypertrophy.. These findings suggested that HSYA protected against hypoxic induced pulmonary hypertension by reversing the remodelling of the pulmonary artery through inhibiting the proliferation and hypertrophy of PASMCs. This is in accordance with our previous finding that HSYA protects against the pulmonary artery vascular constriction. All these results suggest that HSYA may be a promising candidate for HPH treatment. Topics: Animals; Carthamus tinctorius; Cell Survival; Cells, Cultured; Chalcone; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Male; Myocytes, Smooth Muscle; Phytotherapy; Pulmonary Artery; Quinones; Rats, Wistar; Vascular Remodeling | 2016 |