hydroxysafflor-yellow-a and Brain-Ischemia

hydroxysafflor-yellow-a has been researched along with Brain-Ischemia* in 22 studies

Trials

1 trial(s) available for hydroxysafflor-yellow-a and Brain-Ischemia

ArticleYear
Effect and Safety of Hydroxysafflor Yellow A for Injection in Patients with Acute Ischemic Stroke of Blood Stasis Syndrome: A Phase II, Multicenter, Randomized, Double-Blind, Multiple-Dose, Active-Controlled Clinical Trial.
    Chinese journal of integrative medicine, 2020, Volume: 26, Issue:6

    To assess the effect and safety of Hydroxysafflor Yellow A for Injection (HSYAI) in treating patients with acute ischemic stroke (AIS) and blood stasis syndrome (BSS).. A multicenter, randomized, double-blind, multiple-dose, active-controlled phase II trial was conducted at 9 centers in China from July 2013 to September 2015. Patients with moderate or severe AIS and BSS were randomly assigned to low-, medium-, high-dose HSYAI groups (25, 50 and 70 mg/d HSYAI by intravenous infusion, respectively), and a control group (Dengzhan Xixin Injection (, DZXXI) 30 mL/d by intravenous infusion), for 14 consecutive days. The primary outcome was the Modified Rankin Scale (mRS) score ⩽1 at days 90 after treatment. The secondary outcomes included the National Institute of Health Stroke Scale (NIHSS) score ⩽1, Barthel Index (BI) score ⩾95, and BSS score reduced ⩾30% from baseline at days 14, 30, 60, and 90 after treatment. The safety outcomes included any adverse events during 90 days after treatment.. Of the 266 patients included in the effectiveness analysis, 66, 67, 65 and 68 cases were in the low-, medium-, and high-dose HSYAI and control groups, respectively. The proportions of patients in the medium- and high-dose HSYAI groups with mRS score ⩽1 at days 90 after treatment were significantly larger than the control group (P<0.05). The incidences of favorable outcomes of NIHSS and BI at days 90 after treatment as well as satisfactory improvement of BSS at days 30 and 60 after treatment in the medium- and high-dose HSYAI groups were all significantly higher than the control group (P<0.05). No significant difference was reported among the 4 groups in any specific adverse events (P>0.05).. HSYAI was safe and well-tolerated at all doses for treating AIS patients with BSS. The medium (50 mg/d) or high dose (75 mg/d) might be the optimal dose for a phase III trial. (Registration No. ChiCTR-2000029608).

    Topics: Aged; Brain Ischemia; Cerebrovascular Circulation; Chalcone; Dose-Response Relationship, Drug; Double-Blind Method; Female; Humans; Injections; Male; Middle Aged; Quinones; Stroke; Surveys and Questionnaires

2020

Other Studies

21 other study(ies) available for hydroxysafflor-yellow-a and Brain-Ischemia

ArticleYear
Nanoemulsions of Hydroxysafflor Yellow A for Enhancing Physicochemical and In Vivo Performance.
    International journal of molecular sciences, 2023, May-12, Volume: 24, Issue:10

    Stroke was always a disease that threatened human life and health worldwide. We reported the synthesis of a new type of hyaluronic acid-modified multi-walled carbon nanotube. Then, we produced hydroxysafflor yellow A-hydroxypropyl-β-cyclodextrin phospholipid complex water-in-oil nanoemulsion with hyaluronic acid-modified multi-walled carbon nanotubes and chitosan (HC@HMC) for oral treatment of an ischemic stroke. We measured the intestinal absorption and pharmacokinetics of HC@HMC in rats. We found that the intestinal absorption and the pharmacokinetic behavior of HC@HMC was superior to that of HYA. We measured intracerebral concentrations after oral administration of HC@HMC and found that more HYA crossed the blood-brain barrier (BBB) in mice. Finally, we evaluated the efficacy of HC@HMC in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice. In MCAO/R mice, oral administration of HC@HMC demonstrated significant protection against cerebral ischemia-reperfusion injury (CIRI). Furthermore, we found HC@HMC may exert a protective effect on cerebral ischemia-reperfusion injury through the COX2/PGD2/DPs pathway. These results suggest that oral administration of HC@HMC may be a potential therapeutic strategy for the treatment of stroke.

    Topics: Animals; Brain Ischemia; Humans; Hyaluronic Acid; Infarction, Middle Cerebral Artery; Mice; Nanotubes, Carbon; Rats; Reperfusion Injury; Stroke

2023
Hydroxysafflor Yellow A Alleviates Ischemic Stroke in Rats via HIF-1[Formula: see text], BNIP3, and Notch1-Mediated Inhibition of Autophagy.
    The American journal of Chinese medicine, 2022, Volume: 50, Issue:3

    Stroke has become a major cause of death and disability worldwide. The cellular recycling pathway autophagy has been implicated in ischemia-induced neuronal changes, but whether autophagy plays a beneficial or detrimental role is controversial. Hydroxysafflor Yellow A (HSYA), a popular herbal medicine, is an extract of Carthamus tinctorius and is used to treat ischemic stroke (IS) in China. HSYA has been shown to prevent cardiovascular and cerebral ischemia/reperfusion injury in animal models. However, the specific active ingredients and molecular mechanisms of HSYA in IS remain unclear. Here, we investigated the effect of HSYA treatment on autophagy in a rat model of IS. IS was induced in rats by middle cerebral artery occlusion. Rats were treated once daily for 3 days with saline, HYSA, or the neuroprotective agent Edaravone. Neurobehavioral testing was performed on days 1, 2, and 3 post-surgery. Brains were removed on day 3 post-surgery for histological evaluation of infarct area, morphology, and for qRT-PCR and western blot analysis of the expression of the autophagy factor LC3 and the signaling molecules HIF-1[Formula: see text], BNIP3, and Notch1. Molecular docking studies were performed in silico to predict potential interactions between HSYA and LC3, HIF-1[Formula: see text], BNIP3, and Notch1 proteins. The result showed that HSYA treatment markedly alleviated IS-induced neurobehavioral deficits and reduced brain infarct area and tissue damage. HSYA also significantly reduced hippocampal expression levels of LC3, HIF-1[Formula: see text], BNIP3, and Notch1. The beneficial effect of HSYA was generally superior to that of Edaravone. Molecular modeling suggested that HSYA may bind strongly to HIF-1[Formula: see text], BNIP3, and Notch1 but weakly to LC3. In conclusion, HSYA inhibits post-IS autophagy induction in the brain, possibly by suppressing HIF-1[Formula: see text], BNIP3 and Notch1. HSYA may have utility as a post-IS neuroprotective agent.

    Topics: Animals; Autophagy; Brain Ischemia; Chalcone; Edaravone; Hypoxia-Inducible Factor 1; Ischemic Stroke; Membrane Proteins; Mitochondrial Proteins; Molecular Docking Simulation; Neuroprotective Agents; Quinones; Rats; Receptor, Notch1

2022
Hydroxysafflor yellow A alleviates cerebral ischemia reperfusion injury by suppressing apoptosis via mitochondrial permeability transition pore.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2021, Volume: 85

    Mitochondria are key cellular organelles that are essential for cell fate decisions. Hydroxysafflor yellow A (HSYA) has displayed an impressively essential role in protection of cerebral ischemia/reperfusion (I/R). However, the mitochondrial effect of HSYA on Brain Microvascular Endothelial Cells (BMECs) under I/R remains to be largely unclear.. To evaluate the protective effects of HSYA-mediated mitochondrial permeability transition pore (mPTP) on cerebral I/R injury and its mechanism.. Cerebral I/R injury was established by the model of Middle cerebral artery occlusion (MCAO) in rats. Furthermore, to further clarify the relevant mechanism of HSYA's effects on mPTP, inhibition of extracellular regulated protein kinases (ERK) with U0126 and transfect with Cyclophilin D (CypD) SiRNA to reversely verified whether the protective effects of HSYA were exerted by regulating the Mitogen-activated protein kinase kinase (MEK)/ERK/CypD pathway.. HSYA treatment significantly increased BMECs viability, decreased the generation of ROS, opening of mPTP and translocation of cytochrome c after OGD/R. In addition to inhibited CypD, HSYA potentiated MEK and increased phosphorylation of ERK expression in BMECs, inhibited apoptosis mediated by mitochondrial. Notably, HSYA also significantly ameliorated neurological deficits and decreased the infarct volume in rats.. HSYA reduced the CytC export from mitochondrial by inhibited the open of mPTP via MEK/ERK/CypD pathway, contributing to the protection of I/R. Thus, our study not only revealed novel mechanisms of HSYA for its anti-I/R function, but also provided a template for the design of novel mPTP inhibitor for the treatment of various mPTP-related diseases.

    Topics: Animals; Apoptosis; Brain Ischemia; Chalcone; Endothelial Cells; Male; MAP Kinase Signaling System; Mitochondria; Mitochondrial Permeability Transition Pore; Phosphorylation; Quinones; Rats; Rats, Sprague-Dawley; Reperfusion Injury

2021
Hydroxysafflor Yellow A Confers Neuroprotection from Focal Cerebral Ischemia by Modulating the Crosstalk Between JAK2/STAT3 and SOCS3 Signaling Pathways.
    Cellular and molecular neurobiology, 2020, Volume: 40, Issue:8

    Natural bioactive compounds have increasingly proved to be promising in evidence- or target-directed treatment or modification of a spectrum of diseases including cerebral ischemic stroke. Hydroxysafflor yellow A (HSYA), a major active component of the safflower plant, has drawn more interests in recent year for its multiple pharmacological actions in the treatment of cerebrovascular and cardiovascular diseases. Although the Janus kinase signaling, such as JAK2/STAT3 pathway, has been implicated in the modulation of the disease, the inhibition or activation of the pathway that contributed to the neuronal prevention from ischemic damages remains controversial. In this study, a series of experiments were performed to examine the dose- and therapeutic time window-related pharmacological efficacies of HSYA with emphasis on the HSYA-modulated interaction of JAK2/STAT3 and SOCS3 signaling in the MCAO rats. We found that HSYA treatment significantly rescued the neurological and functional deficits in a dose-dependent manner in the MCAO rats within 3 h after ischemia. HSYA treatment with a dosage of 8 mg/kg or higher markedly downregulated the expression of the JAK2-mediated signaling that was activated in response to ischemic insult, while it also promoted the expression of SOCS3 coordinately. In the subsequent experiments with the use of the JAK2 inhibitor WP1066, we found that the treatment of WP1066 alone or combination of WP1066/HSYA all exhibited inhibitory effects on JAK2-mediated signaling, while there was no influence on the SOCS3 activity of corresponding efficacious data in the MCAO rats, suggesting that excessive activation of JAK2/STAT3 might be necessary for HSYA to provoke SOCS3-negative feedback signaling. Taking together, our study demonstrates that HSYA might modulate the crosstalk between JAK2/STAT3 and SOCS3 signaling pathways that eventually contributed to its therapeutic roles against cerebral ischemic stroke.

    Topics: Animals; Brain Ischemia; Chalcone; Janus Kinase 2; Male; Neurons; Neuroprotection; Quinones; Stroke; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins

2020
Protective effect of Hydroxysafflor Yellow A on cerebral ischemia reperfusion-injury by regulating GSK3β-mediated pathways.
    Neuroscience letters, 2020, 09-25, Volume: 736

    Ischemia-reperfusion (I/R) injury is accompanied by high mortality and morbidity. Unfortunately, there are few effective therapeutic medicines and strategies to enhance its outcome. Hydroxysafflor Yellow A (HSYA) exerts multiple biological activities and has potential protective effects against I/R injury in the brain, liver and heart. However, its underlying mechanism is still unclear. Here, we investigated whether HSYA modulates apoptosis and neuro-inflammation through the Glycogen synthase kinase-3β(GSK3β)-mediated pathway in a transient middle cerebral artery occlusion (MCAO) rat model and oxygen/glucose deprivation (OGD)-challenged primary neuronal cultures both in vivo and in vitro. Male Wistar rats were subjected to MCAO for 2 h, followed by 24 h of reperfusion. HSYA was administered 15 min after occlusion, SB216763 (GSK3β inhibitor) was injected to the left ventricle of the rat 6 h prior to MCAO. After 24 h of perfusion, apoptosis-associated protein and inflammatory markers were detected by western blotting. Meanwhile, terminal-deoxynucleotidyl transferase mediated nick end labeling(TUNEL) assay was used to evaluate the number of apoptotic cells in OGD-challenged neurons, cleaved caspase-3 were evaluated by Immunofluorescence (IF). Our data indicated that HSYA administration reduced infarct volume, decreased neurological deficit scores, elevated GSK3β phosphorylation and inhibited the activation of iNOS, NF-κB, and capase-3 in the penumbra of I/R rats. Moreover, blockade of GSK3β partly reversed the protective effect of HSYA on I/R by regulating NF-κB and caspase-3 both in vivo and in vitro. Collectively, we found that HSYA ameliorates I/R injury through its anti-inflammatory and anti-apoptotic effects via modulation of GSK-3β phosphorylation.

    Topics: Animals; Apoptosis; Brain; Brain Ischemia; Chalcone; Glycogen Synthase Kinase 3 beta; Infarction, Middle Cerebral Artery; Male; Neuroprotective Agents; Quinones; Rats; Rats, Wistar; Reperfusion Injury; Signal Transduction

2020
Proteomic Analysis of Hydroxysafflor Yellow A Against Cerebral Ischemia/Reperfusion Injury in Rats.
    Rejuvenation research, 2019, Volume: 22, Issue:6

    Hydroxysafflor yellow A (HSYA), an active component from Chinese medicinal herb, has been applied to the prevention and treatment of cerebral ischemia/reperfusion injury (CIRI). To clarify the comprehensive mechanisms HSYA for stroke, we used label-free quantitative proteomic analysis to investigate the modulated proteins of rats subjected to CIRI and their alteration by HSYA. Neurological examination, infarct assessment, and biochemical assay were performed to validate the effects of HSYA, and the results indicated that HSYA played a significant role in brain protection. A total of 13 proteins were identified as overlapped proteins by label-free quantitative proteomic analysis. Gene Ontology and pathway analysis showed that these differentially expressed proteins were mainly enriched in the hypoxia-inducible factor 1 (HIF-1) signaling pathway. Furthermore, networks were constructed with respect to protein function interactions. The results suggested that seven proteins were identified as hub proteins between model and sham groups, while 25 proteins were identified as hub proteins between HSYA and model groups. In addition, the expressions of three overlapping proteins were validated by Western blot, and their levels were consistent with the results of label-free analysis. In conclusion, Eftud2, mTOR, Rab11, Ppp2r5e, and HIF-1 signaling pathways have been detected as key hub proteins and pathways in HSYA against CIRI through proteomic analysis. Our research has provided convincing explanations for the mechanism of HSYA against CIRI and the identified key proteins and pathways might provide novel therapeutics for CIRI.

    Topics: Animals; Brain Ischemia; Chalcone; Male; Neuroprotective Agents; Proteome; Proteomics; Quinones; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction

2019
Neuroprotection of hydroxysafflor yellow A in experimental cerebral ischemia/reperfusion injury via metabolic inhibition of phenylalanine and mitochondrial biogenesis.
    Molecular medicine reports, 2019, Volume: 19, Issue:4

    Stroke is the second most frequent cause of mortality, resulting in a huge societal burden worldwide. Timely reperfusion is the most effective therapy; however, it is difficult to prevent ischemia/reperfusion (I/R) injury. In traditional Chinese medicine, hydroxysafflor yellow A (HSYA) has been widely used for the treatment of cerebrovascular disease and as a protective therapy against I/R injury. Evidence has demonstrated that HSYA could reduce the levels of reactive oxygen species and suppress cellular apoptosis; however, whether HSYA alters the metabolic profile as its underlying mechanism for neuroprotection remains unknown. In the present study, using a metabolomic screening, phenylalanine was identified to significantly increase in an experimental model of mouse cerebral I/R injury. Notably, western blotting and qPCR analysis were conducted to test the expression level of apoptosis‑associated factors, and HSYA was identified to be able to protect neuronal cells by reducing phenylalanine level associated with I/R injury. Additionally, these findings were confirmed in primary mouse neurons and PC12 cells exposed to oxygen and glucose deprivation/reoxygenation (OGD/R) stress. Of note, HSYA was observed to regulate the mRNA expression of key metabolic enzymes, phenylalanine hydroxylase, tyrosine aminotransferase and aspartate aminotransferase, which are responsible for phenylalanine metabolism. Furthermore, by performing mitochondrial labeling and JC‑1 fluorescence assay, HSYA was identified to promote mitochondrial function and biogenesis suppressed by OGD/R. The findings of the present study demonstrated that I/R injury could increase the levels of phenylalanine, and HSYA may inhibit phenylalanine synthesis to enhance mitochondrial function and biogenesis for neuroprotection. The present study proposed a novel metabolite biomarker for cerebral I/R injury and the evaluated the efficacy of HSYA as a potential therapeutic treatment I/R injury.

    Topics: Animals; Behavior, Animal; Brain Ischemia; Chalcone; Disease Models, Animal; Energy Metabolism; Gene Expression Regulation, Enzymologic; Mice; Mitochondria; Neurons; Neuroprotective Agents; Organelle Biogenesis; Oxidative Stress; PC12 Cells; Phenylalanine; Quinones; Rats; Reperfusion Injury; Treatment Outcome

2019
Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A.
    International journal of pharmaceutics, 2018, Jan-15, Volume: 535, Issue:1-2

    Hydroxysafflor yellow A (HSYA) is the main bioactive flavonoid extracted from the flower of Carthamus tinctorius L., which is widely used in traditional Chinese medicine for the treatment of myocardial ischemia and cerebral ischemia. HSYA has high water solubility but poor intestinal membrane permeability, resulting in low oral bioavailability. Currently, only HSYA sodium chloride injection has been approved for clinical use and oral formulations are urgently needed. In this study, HSYA solid lipid nanoparticles (SLNs) with the structure of w/o/w were prepared by a warm microemulsion process using approved drug excipients for oral delivery to increase the oral absorption of HSYA. The optimized HSYA SLNs are spherical with an average size of 214nm and the encapsulation efficiency is 55%. HSYA SLNs exhibited little cytotoxicity in Caco-2 and Hela cells, but increased the oral absorption of HSYA about 3.97-fold in rats, compared to HSYA water solution. In addition, cycloheximide pretreatment significantly decreased the oral absorption of HSYA delivered by SLNs. Importantly, the pharmacodynamics evaluation demonstrated that SLNs further decreased the infarct areas in rats. In conclude, SLNs could be a promising delivery system to enhance the oral absorption and pharmacological activities of HSYA.

    Topics: Administration, Oral; Animals; Brain Ischemia; Caco-2 Cells; Cell Survival; Chalcone; Drug Carriers; Drug Liberation; Flavonoids; HeLa Cells; Humans; Lipids; Male; Medicine, Chinese Traditional; Nanoparticles; Oral Mucosal Absorption; Quinones; Rats, Sprague-Dawley

2018
Protective cerebrovascular effects of hydroxysafflor yellow A (HSYA) on ischemic stroke.
    European journal of pharmacology, 2018, Jan-05, Volume: 818

    The purpose of the present work was designed to explore protective cerebrovascular effects of hydroxysafflor yellow A (HSYA), and provide preclinical efficacy and mechanism data for its possible application in patients with cerebral ischemia. The protective effect of HSYA on ischemic stroke was evaluated by infarct sizes and neurological scores in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO). Cerebrovascular permeability was detected by Evans blue dye leakage in MCAO rats. Cerebral blood flow, as well as blood pressure and heart rate were monitored using flow probes in Beagle dogs. Basilar artery tension isolated from Beagle dogs was evaluated with an MPA 2000 data-acquisition system. Coagulation-related function was also judged, including rabbit platelet aggregation by adenosine diphosphate (ADP) and platelet-aggregating factor (PAF), rabbit blood viscosity by a blood viscometer, and thrombus formation by rat arterial-venous shunts. Results showed that HSYA treatment significantly decreased the infarct sizes, neurological scores and cerebrovascular permeability in rats with MCAO. However, cerebral blood flow, blood pressure and heart rate were not affected by HSYA. In vitro, HSYA had a strong effect on cerebrovascular vasodilatation, and significantly decreased platelet aggregation, blood viscosity, and thrombogenesis. Besides well-known anti-coagulation effects, HSYA protects against ischemic stroke by dilating cerebral vessels and improving cerebrovascular permeability.

    Topics: Animals; Basilar Artery; Blood Pressure; Blood Viscosity; Brain; Brain Ischemia; Cerebrovascular Circulation; Chalcone; Coronary Vessels; Dogs; Heart Rate; Permeability; Platelet Aggregation; Quinones; Rabbits; Rats; Stroke; Thrombosis; Vasodilation

2018
Protective effect of hydroxysafflor yellow A alone or in combination with acetylglutamine on cerebral ischemia reperfusion injury in rat: A PET study using
    European journal of pharmacology, 2018, Apr-15, Volume: 825

    Topics: Animals; Apoptosis; Brain Ischemia; Chalcone; Fluorine Radioisotopes; Glutamine; Infarction, Middle Cerebral Artery; Inflammation; Male; Neuroprotective Agents; Positron-Emission Tomography; Quinones; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Signal Transduction; Up-Regulation

2018
Hydroxysafflor Yellow A Reprograms TLR9 Signalling Pathway in Ischaemic Cortex after Cerebral Ischaemia and Reperfusion.
    CNS & neurological disorders drug targets, 2018, Volume: 17, Issue:5

    Hydroxysafflor yellow A (HSYA) was reported to suppress inflammation in ischaemic microglia. However, the mechanism through which HSYA inhibits inflammation caused by cerebral ischaemia and reperfusion injury remains unknown. Here, we have mimicked acute cerebral ischaemia and reperfusion injury by subjecting male Sprague-Dawley rats to transient middle cerebral artery occlusion for 90 minutes and have demonstrated that toll-like receptor 9 (TLR9) was upregulated from day 3 after reperfusion, accompanied by the persistent activation of the pro-inflammatory nuclear factor-κB (NF-κB) pathway from 6 hours to day 7. HSYA was injected intraperitoneally at a dose of 6 mg/kg per day, which activated TLR9 in microglia of ischaemic cortex at 6 hours after reperfusion and then obviously suppressed the NF-κB pathway from day 1 to day 7. Meanwhile, HSYA also activated the anti-inflammatory pathway through interferon regulatory factor 3 from day 1 to day 3. The anti-inflammatory effect of HSYA was partially reversed by TLR9-siRNA interference in primary microglia, which was stimulated by oxygen-glucose deprivation and reoxygenation treatment. The regulation of TLR9-mediated inflammation by HSYA was consistent with the recovery of neurological deficits in rats.. Therefore, our findings support that HSYA exerts anti-inflammatory effects by reprogramming the TLR9 signalling pathway during treatment of acute cerebral ischaemia and reperfusion injury.

    Topics: Animals; Animals, Newborn; Brain; Brain Infarction; Brain Ischemia; Cell Hypoxia; Cells, Cultured; Chalcone; Disease Models, Animal; Dose-Response Relationship, Drug; Functional Laterality; Gene Expression Regulation; Glucose; In Situ Nick-End Labeling; Inflammation; Male; Mice; Mice, Inbred C57BL; Microscopy, Confocal; Neurologic Examination; Quinones; Random Allocation; Rats; Rats, Sprague-Dawley; Reperfusion; RNA Interference; RNA, Messenger; Signal Transduction; Time Factors; Toll-Like Receptor 9; Transfection

2018
Neuroprotective effect of hydroxy safflor yellow A against cerebral ischemia-reperfusion injury in rats: putative role of mPTP.
    Journal of basic and clinical physiology and pharmacology, 2016, Volume: 27, Issue:1

    Hydroxy safflor yellow A (HSYA) has been translated clinically for cardiovascular diseases. HSYA is also greatly acknowledged for its protective effects against cerebral ischemic-reperfusion (I/R) injury. Although the precise mechanism of cerebral I/R injury is not fully understood, oxygen-derived free radicals and mitochondrial permeability transition pore (mPTP) opening during I/R injury are widely recognized as an important contributor to neuronal injury. Thus, we speculated that the neuroprotective effects of HSYA against cerebral I/R injury may be associated with mPTP modulation.. Induction of I/R injury was achieved by 60 min of middle cerebral artery occlusion, followed by reperfusion for 24 h. For behavior and cognitive assessment, neurological scoring (NSS), rotarod, and Y-maze task were performed. Oxidative damage was measured in terms of markers such as malondialdehyde, reduced glutathione, and catalase levels and cerebral infarct volumes were quantified using 2,3,5-triphenyl tetrazolinium chloride staining. I/R injury-induced inflammation was determined using tumor necrosis factor-α (TNF-α) levels.. Animals exposed to I/R injury showed neurological severity, functional and cognitive disability, elevated oxidative markers, and TNF-α levels along with large infarct volumes. HSYA treatment during onset of reperfusion ameliorated performance in NSS, rotarod and Y-maze attenuated oxidative damage, TNF-α levels, and infarction rate. However, treatment with carboxyatractyloside, an mPTP opener, 20 min before HSYA, attenuated the protective effect of HSYA.. Our study confirmed that protective effect of HSYA may be conferred through its free radical scavenger action followed by inhibiting the opening of mPTP during reperfusion and HSYA might act as a promising therapeutic agent against cerebral I/R injury.

    Topics: Animals; Brain Ischemia; Chalcone; Cognition Disorders; Disease Models, Animal; Free Radical Scavengers; Infarction, Middle Cerebral Artery; Male; Maze Learning; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Neuroprotective Agents; Oxidative Stress; Quinones; Rats; Rats, Wistar; Reperfusion Injury; Tumor Necrosis Factor-alpha

2016
AKT-related autophagy contributes to the neuroprotective efficacy of hydroxysafflor yellow A against ischemic stroke in rats.
    Translational stroke research, 2014, Volume: 5, Issue:4

    Hydroxysafflor yellow A (HSYA) has been approved clinically for treating cardiac patients in China since 2005. Recent studies have indicated that HSYA may be neuroprotective at 24 h in experimental stroke models. Autophagy is a vital degradation pathway of damaged intracellular macromolecules or organelles to maintain homeostasis in physiological or pathological conditions. The purpose of this study is to investigate the neuroprotection of HSYA at 72 h and its mechanism via activating the autophagy pathway using an acute ischemic-reperfusion stroke rat model. Rats were treated with HSYA (2 mg/kg) during 90 min middle cerebral artery occlusion/72 h reperfusion by intravenous administration at four different time points (15 min post-ischemia, 15 min, 24 h, and 48 h post reperfusion), mimicking the potential treatment for acute ischemic stroke. HSYA administration reduced infarction volume and improved various neurological functions at 72 h of reperfusion. The possible molecular mechanism was investigated. We found that HSYA activated the AKT-autophagy pathway in penumbra tissue, which occurred in neuronal-specific cells. Moreover, blocking the AKT-autophagy pathway by an AKT inhibitor abolished HSYA-induced neuroprotection after cerebral ischemia. HSYA may be a promising drug for treating acute ischemic stroke and the AKT-dependent autophagy pathway contributes to the HSYA-afforded neuroprotection.

    Topics: Animals; Autophagy; Brain; Brain Ischemia; Chalcone; Infarction, Middle Cerebral Artery; Male; Motor Activity; Neurons; Neuroprotective Agents; Proto-Oncogene Proteins c-akt; Quinones; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Stroke

2014
Hydroxysafflor yellow A protects against cerebral ischemia-reperfusion injury by anti-apoptotic effect through PI3K/Akt/GSK3β pathway in rat.
    Neurochemical research, 2013, Volume: 38, Issue:11

    Hydroxysafflor yellow A (HSYA) is the major active chemical component of the flower of the safflower plant, Carthamus tinctorius L. Previously, its neuroprotection against cerebral ischemia-reperfusion (I/R) injury was reported by anti-oxidant action and suppression of thrombin generation. Here, we investigate the role of HSYA in cerebral I/R-mediated apoptosis and possible signaling pathways. Male Wistar rats were subjected to transient middle cerebral artery occlusion for 2 h, followed by 24 h reperfusion. HSYA was administered via tail-vein injection just 15 min after occlusion. The number of apoptotic cells was measured by TUNEL assay, apoptosis-related proteins Bcl-2, Bax and the phosphorylation levels of Akt and GSK3β in ischemic penumbra were assayed by western blot. The results showed that administration of HSYA at the doses of 4 and 8 mg/kg significantly inhibited the apoptosis by decreasing the number of apoptotic cells and increasing the Bcl-2/Bax ratio in rats subjected to I/R injury. Simultaneously, HSYA treatment markedly increased the phosphorylations of Akt and GSK3β. Blockade of PI3K activity by wortmannin dramatically abolished its anti-apoptotic effect and lowered both Akt and GSK3β phosphorylation levels. Taken together, these results suggest that HSYA protects against cerebral I/R injury partly by reducing apoptosis via PI3K/Akt/GSK3β signaling pathway.

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Brain Ischemia; Chalcone; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Infarction, Middle Cerebral Artery; Male; Neuroprotective Agents; Phosphatidylinositol 3-Kinase; Proto-Oncogene Proteins c-akt; Quinones; Rats; Rats, Wistar; Reperfusion Injury; Signal Transduction

2013
Capacity of HSYA to inhibit nitrotyrosine formation induced by focal ischemic brain injury.
    Nitric oxide : biology and chemistry, 2013, Nov-30, Volume: 35

    Peroxynitrite-mediated protein tyrosine nitration represents a crucial pathogenic mechanism of stroke. Hydroxysafflor yellow A (HSYA) is the most important active component of the safflower plant. Here we assess the neuroprotective efficacy of HSYA and investigate the mechanism through anti-nitrative pathway. Rats were subjected to 60-min ischemia followed by reperfusion. HSYA (2.5-10mg/kg) was injected at 1h after ischemia onset. Other groups received HSYA (10mg/kg) treatment at 3-9h after onset. Infarct volume, brain edema, and neurological score were evaluated at 24h after ischemia. Nitrotyrosine and inducible NO synthase (iNOS) expression, as well as NO level (nitrate/nitrite) in ischemic cortex was examined within 24h after ischemia. The ability of HSYA to scavenge peroxynitrite was evaluated in vitro. Infarct volume was significantly decreased by HSYA (P<0.05), with a therapeutic window of 3h after ischemia at dose of 10mg/kg. HSYA treatment also reduced brain edema and improved neurological score (P<0.05). Nitrotyrosine formation was dose- and time-dependently inhibited by HSYA. The time window of HSYA in decreasing protein tyrosine nitration paralleled its action in infarct volume. HSYA also greatly reduced iNOS expression and NO content at 24h after ischemia, suggesting prevention of peroxynitrite generation from iNOS. In vitro, HSYA blocked authentic peroxynitrite-induced tyrosine nitration in bovine serum albumin and primary cortical neurons. Collectively, our results indicated that post-ischemic HSYA treatment attenuates brain ischemic injury which is at least partially due to reducing nitrotyrosine formation, possibly by the combined mechanism of its peroxynitrite scavenging ability and its reduction in iNOS production.

    Topics: Animals; Brain Ischemia; Chalcone; Gene Expression; Male; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Peroxynitrous Acid; Quinones; Rats; Rats, Sprague-Dawley; Tyrosine

2013
Hydroxysafflor Yellow A suppresses thrombin generation and inflammatory responses following focal cerebral ischemia-reperfusion in rats.
    Bioorganic & medicinal chemistry letters, 2010, Jul-15, Volume: 20, Issue:14

    Hydroxysafflor Yellow A has been demonstrated to attenuate pressure overloaded hypertrophy in rats and inhibit platelet aggregation. Herein we found that Hydroxysafflor Yellow A prevented cerebral ischemia-reperfusion injury by inhibition of thrombin generation. In addition, treatment with Hydroxysafflor Yellow A significantly inhibited NF-kappaB p65 nuclear translation and p65 binding activity, both mRNA and protein levels of ICAM-1 and the infiltration of neutrophils. Mean while, Hydroxysafflor Yellow A had the capacity to improve neurological deficit scores, increase the number of the surviving hippocampal CA1 pyramidal cells and decrease the plasma angiotensin II level. These results illustrated that anti-cerebral ischemic mechanism of Hydroxysafflor Yellow A may be due to its suppression of thrombin generation and inhibition of thrombin-induced inflammatory responses by reducing angiotensin II content.

    Topics: Animals; Brain Ischemia; Chalcone; Inflammation; Male; Quinones; Rats; Rats, Wistar; Reperfusion Injury; Thrombin

2010
[Inhibitory action of hydroxysafflor yellow A on inflammatory signal transduction pathway related factors in rats with cerebral cortex ischemia].
    Yao xue xue bao = Acta pharmaceutica Sinica, 2008, Volume: 43, Issue:6

    Hydroxysafflor yellow A (HSYA) is a main active monomer purified from Carthamus tinctorius L. The research is to study the inhibitory effect of HSYA on the inflammatory signal transduction pathway related factors which were induced by permanent cerebral ischemia in rats. By using the successive administration at a 30 min interval of HSYA and the rats permanent focal cerebral ischemia model established by a intraluminal suture occlusion method. After cerebral artery occlusion 3, 6, 12 and 24 h, cortex was removed for the next experiments. Western blotting was used to detect the expression of p65 protein and the phospho-IkappaB-alpha (pIkappaB-alpha) in the cytoplasm and nucleus. Nuclear factor-kappaB (NF-kappaB) DNA binding activity was measured by Trans-AM transcription factor assay kits. mRNA expression of cytokines TNF-alpha, IL-1beta, IL-6 and IL-10 was measured by the RT-PCR method. The result showed that intravenous injection of HSYA (10 mg x kg(-1)) to rats after cerebral occlusion, the p65 translocation activity and the phosphorylation of IkappaB-alpha were significantly inhibited. At the same time, HSYA suppressed p65 binding activity and the transcriptional level of pro-inflammatory cytokines including TNF-alpha, IL-1beta and IL-6, and promoted the mRNA expression of anti-inflammatory cytokine IL-10. In conclusion, the anti-cerebral ischemic mechanism of HSYA may be due to its inhibition of NF-kappaB activity and the mRNA expression of cytokines in the inflammatory transduction pathway.

    Topics: Animals; Brain Ischemia; Carthamus; Chalcone; Cytokines; Flowers; I-kappa B Proteins; Interleukin-10; Interleukin-1beta; Interleukin-6; Male; Neuroprotective Agents; NF-KappaB Inhibitor alpha; Phosphorylation; Plants, Medicinal; Protein Transport; Quinones; Rats; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Transcription Factor RelA; Tumor Necrosis Factor-alpha

2008
Therapeutic effects of hydroxysafflor yellow A on focal cerebral ischemic injury in rats and its primary mechanisms.
    Journal of Asian natural products research, 2005, Volume: 7, Issue:4

    The therapeutic effects of hydroxysafflor yellow A (HSYA), extracted from Carthamus tinctorius. L, on focal cerebral ischemic injury in rats and its related mechanisms have been investigated. Focal cerebral ischemia in rats were made by inserting a monofilament suture into internal carotid artery to block the origin of the middle cerebral artery and administrated by HSYA via sublingular vein injection in doses of 1.5, 3.0, 6.0 mg kg(-1) at 30 min after the onset of ischemia, in comparison with the potency of nimodipine at a dose of 0.2 mg kg(-1). Then, 24 h later, the evaluation for neurological deficit scores of the rats were recorded and postmortem infarct areas determined by quantitative image analysis. At the end of the experiment, blood samples were taken to determine plasma 6-Keto-PGF1alpha/TXB2 by radioimmunoassays and blood rheological parameters. The effects exerted by HSYA on thrombosis formation by artery vein by-pass method and ADP-induced platelet aggregation in vivo and in vitro were investigated, respectively. The results indicated that more than 30% of the area of ischemic cerebrum was observed in the ischemic model group. HSYA dose-dependently improved the neurological deficit scores and reduced the cerebral infarct area, and HSYA bore a similarity in potency of the therapeutic effects on focal cerebral ischemia to nimodipine. The inhibition rates of thrombosis formation by HSYA at the designated doses were 20.3%, 43.6% and 54.2%, respectively, compared with saline-treated group. Inhibitory activities of HSYA were observed on ADP-induced platelets aggregation in a dose-dependent manner, and the maximum inhibitory aggregation rate of HSYA was 41.8%. HSYA provided a suppressive effect on production of TXA2 without significant effect on plasma PGI2 concentrations. Blood rheological parameters were markedly improved by HSYA, such as whole blood viscosity (from 21.71 +/- 4.77 to 11.61 +/- 0.90 mPa.s), plasma viscosity (from 2.73 +/- 0.53 to 1.42 +/- 0.07 mPa.s), deformability (from 0.66 +/- 0.26 to 0.77 +/- 0.33) and aggregation of erythrocyte (from 3.24 +/- 0.41 to 2.57 +/- 0.30), but no significant effect of HSYA on homatocrit was found (from 51.38 +/- 4.68% to 49.91 +/- 2.32%). HSYA appears to be a good potential agent to treat focal cerebral ischemia, and the underlying mechanisms exerted by HSYA might be involved in its inhibitory effects on thrombosis formation and platelet aggregation as well as its beneficial action on regulation of PG

    Topics: Animals; Brain Ischemia; Chalcone; Dose-Response Relationship, Drug; Epoprostenol; Infarction, Middle Cerebral Artery; Quinones; Rats; Stroke

2005
[Protective effect of hydroxysafflor yellow A on experimental cerebral ischemia in rats].
    Yao xue xue bao = Acta pharmaceutica Sinica, 2005, Volume: 40, Issue:12

    To investigate the protective effect of hydroxysafflor yellow A (HSYA), a soluble element extracted from Carthamus tinctorius L., on focal cerebral ischemia in rats.. Focal cerebral ischemia in male Wistar-Kyoto (WKY) rats were induced by permanent middle cerebral artery occlusion (MCAO). Three doses of 1.5, 3.0 and 6.0 mg x kg(-1) of HSYA were administrated to three groups of rats, separately, via sublingular vein injection 30 min after the onset of ischemia. 24 h after ischemia in rats, neurological deficit scores were evaluated and the infarction area of brain was assessed by quantitative image analysis. The in vitro neuroprotective effect of HSYA was tested in cultured fetal cortical neurons exposed to glutamate and sodium cyanide (NaCN).. HSYA at doses of 3.0 and 6.0 mg x kg(-1) exerted significant neuroprotective effects on rats with focal cerebral ischemic injury as expressed by neurological deficit scores and reduced the infarct area as compared with saline group, and the potency of HSYA at dose of 6.0 mg x kg(-1) was similar to that of 0.2 mg x kg(-1) of nimodipine. In vitro studies, HSYA significantly inhibited neurons damage induced by exposure to glutamate and NaCN in cultured fetal cortical cells.. HSYA has potential neuroprotective action against focal cerebral ischemia in rats and cultured rat fetal cortical neurons as well.

    Topics: Animals; Behavior, Animal; Brain; Brain Ischemia; Carthamus tinctorius; Cells, Cultured; Cerebral Cortex; Chalcone; Glutamic Acid; Infarction, Middle Cerebral Artery; L-Lactate Dehydrogenase; Male; Neurons; Neuroprotective Agents; Plants, Medicinal; Quinones; Rats; Rats, Inbred WKY; Sodium Cyanide

2005
[Protective effect of hydroxysafflor yellow A against rat cortex mitochondrial injuries induced by cerebral ischemia].
    Yao xue xue bao = Acta pharmaceutica Sinica, 2004, Volume: 39, Issue:10

    To study the effects of hydroxysafflor yellow A (HSYA) on the mitochondrial function of cortex mitochondrial during cerebral ischemia in rats.. Rat focal cerebral ischemia model in rats was established by ligation of middle cerebral central artery. Cortex mitochondria were isolated and prepared for the measurement of membrane fluidity, swelling, respiratory function, activities of mitochondrial respiratory enzymes and superoxide dismutase (SOD), contents of phospholipid, malondial dehyde (MDA) and Ca2+ to evaluate the function of mitochondria.. Focal cerebral ischemia resulted in severe neuronal mitochondrial injuries, which could be alleviated by i.v. HSYA (10, 20 mg x kg(-1)), and nimodipine (Nim, 1.0 mg x kg(-1)). The swelling of mitochondria was ameliorated, the decomposability of membrane phospholipid was decreased, the membrane fluidity of mitochondria was increased, HSYA also significantly inhibited the decrease in the activities of respiratory enzymes and SOD of mitochondria, and the increase in MDA and Ca2+ levels caused by cerebral ischemia in rats.. HSYA showed a protective action against the cortex mitochondrial injuries in rats induced by cerebral ischemia. The mechanisms may be derived from reducing lipid peroxides, inhibiting Ca2+ overload, scavenging free radicals and improving the energy metabolism.

    Topics: Animals; Brain Ischemia; Calcium; Chalcone; Male; Malondialdehyde; Membrane Fluidity; Mitochondria; Mitochondrial Swelling; NAD; Neuroprotective Agents; Quinones; Rats; Rats, Sprague-Dawley; Superoxide Dismutase

2004
Neuroprotective effects of hydroxysafflor yellow A: in vivo and in vitro studies.
    Planta medica, 2003, Volume: 69, Issue:5

    Previous work has shown that hydroxysafflor yellow A (HSYA), extracted from Carthamus tinctorius L. markedly extended the coagulation time in mice and exhibited a significant antithrombotic effect in rats. The present study was conducted to demonstrate further its neuroprotective effects on cerebral ischemic injury in both in vivo and in vitro studies. In vivo, male Wistar-Kyoto (WKY) rats with middle cerebral artery occlusion (MCAO) were evaluated for neurological deficit scores followed by the treatment with a single dose of HSYA. Furthermore, the infarction area of the brain was assessed in the brain slices. In vitro, the effect of HSYA was tested in cultured fetal cortical cells exposed to glutamate and sodium cyanide (NaCN) to identify its neuroprotection against neurons damage. The results in vivo showed that sublingular vein injection of HSYA at doses of 3.0 mg/kg and 6.0 mg/kg exerted significant neuroprotective effects on rats with focal cerebral ischemic injury by significantly decreasing neurological deficit scores and reducing the infarct area compared with the saline group, HSYA at a dose of 6.0 mg/kg showed a similar potency as nimodipine at a dose of 0.2 mg/kg. Sublingular vein injection of HSYA at the dose of 1.5 mg/kg showed a neuroprotective effect, however, with no significant difference when compared with the saline group. Results in vitro showed that HSYA significantly inhibited neuron damage induced by exposure to glutamate and sodium cyanide (NaCN) in cultured fetal cortical cells. Noticeably, the neuroprotective action of HSYA on glutamate-mediated neuron injury was much better than that of HSYA on NaCN-induced neuron damage. All these findings suggest that HSYA might act as a potential neuroprotective agent useful in the treatment in focal cerebral ischemia. Abbreviations. HSYA:hydroxysafflor yellow A TTC:2,3,5-triphenyltetrazolium chloride MTT:3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide DMEM:Dulbecco's modified Eagle medium FCS:Fetal calf serum MCAO:middle cerebral artery occlusion ECA:external carotid artery ICA:internal carotid artery LDH:lactate dehydrogenase NMDA: N-methyl- D-aspartate

    Topics: Animals; Brain Ischemia; Carthamus tinctorius; Chalcone; Disease Models, Animal; Dose-Response Relationship, Drug; Glutamic Acid; Mice; Neuroprotective Agents; Phytotherapy; Plant Extracts; Quinones; Rats; Rats, Inbred WKY; Sodium Cyanide

2003