hydroxyoctadecadienoic-acid has been researched along with Inflammation* in 4 studies
1 review(s) available for hydroxyoctadecadienoic-acid and Inflammation
Article | Year |
---|---|
Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer.
Linoleic acid (LA) is a major constituent of low-density lipoproteins. An essential fatty acid, LA is a polyunsaturated fatty acid, which is oxidised by endogenous enzymes and reactive oxygen species in the circulation. Increased levels of low-density lipoproteins coupled with oxidative stress and lack of antioxidants drive the oxidative processes. This results in synthesis of a range of oxidised derivatives, which play a vital role in regulation of inflammatory processes. The derivatives of LA include, hydroxyoctadecadienoic acids, oxo-​octadecadienoic acids, epoxy octadecadecenoic acid and epoxy-keto-octadecenoic acids. In this review, we examine the role of LA derivatives and their actions on regulation of inflammation relevant to metabolic processes associated with atherogenesis and cancer. The processes affected by LA derivatives include, alteration of airway smooth muscles and vascular wall, affecting sensitivity to pain, and regulating endogenous steroid hormones associated with metabolic syndrome. LA derivatives alter cell adhesion molecules, this initial step, is pivotal in regulating inflammatory processes involving transcription factor peroxisome proliferator-activated receptor pathways, thus, leading to alteration of metabolic processes. The derivatives are known to elicit pleiotropic effects that are either beneficial or detrimental in nature hence making it difficult to determine the exact role of these derivatives in the progress of an assumed target disorder. The key may lie in understanding the role of these derivatives at various stages of development of a disorder. Novel pharmacological approaches in altering the synthesis or introduction of synthesised LA derivatives could possibly help drive processes that could regulate inflammation in a beneficial manner. Chemical Compounds: Linoleic acid (PubChem CID: 5280450), 9- hydroxyoctadecadienoic acid (PubChem CID: 5312830), 13- hydroxyoctadecadienoic acid (PubChem CID: 6443013), 9-oxo-​octadecadienoic acid (PubChem CID: 3083831), 13-oxo-​octadecadienoic acid (PubChem CID: 4163990), 9,10-epoxy-12-octadecenoate (PubChem CID: 5283018), 12,13-epoxy-9-keto-10- trans -octadecenoic acid (PubChem CID: 53394018), Pioglitazone (PubChem CID: 4829). Topics: Animals; Fatty Acids, Unsaturated; Humans; Inflammation; Linoleic Acid; Metabolic Syndrome; Neoplasms; Oxidation-Reduction | 2016 |
3 other study(ies) available for hydroxyoctadecadienoic-acid and Inflammation
Article | Year |
---|---|
The Relationship between Eicosanoid Levels and Serum Levels of Metabolic and Hormonal Parameters Depending on the Presence of Metabolic Syndrome in Patients with Benign Prostatic Hyperplasia.
Topics: Aged; Eicosanoids; Fatty Acids, Unsaturated; Humans; Hydroxyeicosatetraenoic Acids; Inflammation; Male; Metabolic Syndrome; Middle Aged; Prostatic Hyperplasia; Testosterone; Triglycerides; Waist Circumference | 2019 |
Concentrations of oxidized linoleic acid derived lipid mediators in the amygdala and periaqueductal grey are reduced in a mouse model of chronic inflammatory pain.
Chronic pain is both a global public health concern and a serious source of personal suffering for which current treatments have limited efficacy. Recently, oxylipins derived from linoleic acid (LA), the most abundantly consumed polyunsaturated fatty acid in the modern diet, have been implicated as mediators of pain in the periphery and spinal cord. However, oxidized linoleic acid derived mediators (OXLAMs) remain understudied in the brain, particularly during pain states. In this study, we employed a mouse model of chronic inflammatory pain followed by a targeted lipidomic analysis of the animals' amygdala and periaqueductal grey (PAG) using LC-MS/MS to investigate the effect of chronic inflammatory pain on oxylipin concentrations in these two brain nuclei known to participate in pain sensation and perception. From punch biopsies of these brain nuclei, we detected twelve OXLAMs in both the PAG and amygdala and one arachidonic acid derived mediator, 15-HETE, in the amygdala only. In the amygdala, we observed an overall decrease in the concentration of the majority of OXLAMs detected, while in the PAG the concentrations of only the epoxide LA derived mediators, 9,10-EpOME and 12,13-EpOME, and one trihydroxy LA derived mediator, 9,10,11-TriHOME, were reduced. This data provides the first evidence that OXLAM concentrations in the brain are affected by chronic pain, suggesting that OXLAMs may be relevant to pain signaling and adaptation to chronic pain in pain circuits in the brain and that the current view of OXLAMs in nociception derived from studies in the periphery is incomplete. Topics: Amygdala; Animals; Chromatography, Liquid; Chronic Pain; Disease Models, Animal; Fatty Acids, Unsaturated; Inflammation; Male; Mice; Oxylipins; Periaqueductal Gray; Tandem Mass Spectrometry | 2018 |
Modulation of arachidonic and linoleic acid metabolites in myeloperoxidase-deficient mice during acute inflammation.
Acute inflammation is a common feature of many life-threatening pathologies, including septic shock. One hallmark of acute inflammation is the peroxidation of polyunsaturated fatty acids forming bioactive products that regulate inflammation. Myeloperoxidase (MPO) is an abundant phagocyte-derived hemoprotein released during phagocyte activation. Here, we investigated the role of MPO in modulating biologically active arachidonic acid (AA) and linoleic acid (LA) metabolites during acute inflammation. Wild-type and MPO-knockout (KO) mice were exposed to intraperitoneally injected endotoxin for 24 h, and plasma LA and AA oxidation products were comprehensively analyzed using a liquid chromatography-mass spectrometry method. Compared to wild-type mice, MPO-KO mice had significantly lower plasma levels of LA epoxides and corresponding LA- and AA-derived fatty acid diols. AA and LA hydroxy intermediates (hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids) were also significantly lower in MPO-KO mice. Conversely, MPO-deficient mice had significantly higher plasma levels of cysteinyl-leukotrienes with well-known proinflammatory properties. In vitro experiments revealed significantly lower amounts of AA and LA epoxides, LA- and AA-derived fatty acid diols, and AA and LA hydroxy intermediates in stimulated polymorphonuclear neutrophils isolated from MPO-KO mice. Our results demonstrate that MPO modulates the balance of pro- and anti-inflammatory lipid mediators during acute inflammation and, in this way, may control acute inflammatory diseases. Topics: Animals; Arachidonic Acid; Chromatography, Liquid; Disease Models, Animal; Epoxy Compounds; Fatty Acids, Unsaturated; Hydroxyeicosatetraenoic Acids; Inflammation; Linoleic Acid; Lipopolysaccharides; Male; Mass Spectrometry; Mice; Mice, Inbred C57BL; Mice, Knockout; Neutrophils; Peroxidase; Shock, Septic | 2010 |