hydroxyl radical has been researched along with Stroke in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (66.67) | 29.6817 |
2010's | 1 (33.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Alcázar, A; Ayuso, I; Chioua, M; González, MP; Hadjipavlou-Litina, D; Marco-Contelles, J; Monjas, L; Oset-Gasque, MJ; Rodríguez-Franco, MI; Samadi, A; Soriano, E; Sucunza, D | 1 |
Hirooka, Y; Ito, K; Kimura, Y; Kishi, T; Shimokawa, H; Takeshita, A | 1 |
Ikeda, K; Nara, Y; Negishi, H; Yamori, Y | 1 |
3 other study(ies) available for hydroxyl radical and Stroke
Article | Year |
---|---|
Α-aryl-N-alkyl nitrones, as potential agents for stroke treatment: synthesis, theoretical calculations, antioxidant, anti-inflammatory, neuroprotective, and brain-blood barrier permeability properties.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Antioxidants; Blood-Brain Barrier; Cell Hypoxia; Cell Survival; Cells, Cultured; Cerebral Cortex; Edema; Female; Free Radical Scavengers; Hydroxyl Radical; Lipid Peroxidation; Lipoxygenase Inhibitors; Male; Necrosis; Neurons; Neuroprotective Agents; Nitric Oxide Donors; Nitrogen Oxides; Oximes; Permeability; Quinolines; Rats; Rats, Inbred F344; Rats, Sprague-Dawley; Stereoisomerism; Stroke; Structure-Activity Relationship; Superoxides | 2012 |
Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats.
Topics: 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt; Animals; Blood Pressure; Brain Chemistry; Catalase; Cyclic N-Oxides; Deferoxamine; Genetic Predisposition to Disease; Genetic Therapy; Glutamic Acid; Hydrogen Peroxide; Hydroxyl Radical; Hypertension; Lipid Peroxidation; Male; Medulla Oblongata; Norepinephrine; Oxidative Stress; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reactive Oxygen Species; Recombinant Fusion Proteins; Spin Labels; Stroke; Superoxide Dismutase; Superoxides; Sympathetic Nervous System; Thiobarbituric Acid Reactive Substances; Transduction, Genetic; Vasomotor System | 2004 |
Increased hydroxyl radicals in the hippocampus of stroke-prone spontaneously hypertensive rats during transient ischemia and recirculation.
Topics: Animals; Hippocampus; Hydroxybenzoates; Hydroxyl Radical; Hypertension; Ischemic Attack, Transient; Male; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reperfusion Injury; Stroke | 2001 |