hydroxocobalamin has been researched along with Heart-Arrest* in 8 studies
8 other study(ies) available for hydroxocobalamin and Heart-Arrest
Article | Year |
---|---|
Intraosseous administration of hydroxocobalamin after enclosed structure fire cardiac arrest.
Smoke inhalation is the most common cause of acute cyanide poisoning in the developed world. Hydroxocobalamin is an antidote for cyanide poisoning. There is little published about human intraosseous antidote administration. We present a case of intraosseous hydroxocobalamin administration in an adult smoke inhalation victim, found in cardiac arrest inside her burning manufactured home. Return of spontaneous circulation was achieved after 20 min of cardiopulmonary resuscitation. Five grams of hydroxocobalamin were subsequently given intraosseously. On hospital arrival, patient was found to have a respiratory-metabolic acidosis. She had red-coloured urine without haematuria, a known sequela of hydroxocobalamin administration. Patient's neurological status deteriorated, and she died 4 days after admission. This case highlights that intraosseously administered hydroxocobalamin seems to adequately flow into the marrow cavity and enter the circulatory system despite the non-compressible glass antidote vial. This appears to be only the second reported human case of intraosseous hydroxocobalamin administration. Topics: Adult; Antidotes; Cyanides; Female; Fires; Heart Arrest; Humans; Hydroxocobalamin; Smoke Inhalation Injury | 2021 |
High-dose hydroxocobalamin administered after H2S exposure counteracts sulfide-poisoning-induced cardiac depression in sheep.
Severe H2S poisoning leads to death by rapid respiratory and cardiac arrest, the latter can occur within seconds or minutes in severe forms of intoxication.. To determine the time course and the nature of H2S-induced cardiac arrest and the effects of high-dose hydroxocobalamin administered after the end of sulfide exposure.. NaHS was infused in 16 sedated mechanically ventilated sheep to reach concentrations of H2S in the blood, which was previously found to lead to cardiac arrest within minutes following the cessation of H2S exposure. High-dose hydroxocobalamin (5 g) or saline solution was administered intravenously, 1 min after the cessation of NaHS infusion.. All animals were still alive at the cessation of H2S exposure. Three animals (18%) presented a cardiac arrest within 90 s and were unable to receive any antidote or vehicle. In the animals that survived long enough to receive either hydroxocobalamin or saline, 71% (5/7) died in the control group by cardiac arrest within 10 min. In all instances, cardiac arrest was the result of a pulseless electrical activity (PEA). In the group that received the antidote, intravenous injection of 5 g of hydroxocobalamin provoked an abrupt increase in blood pressure and blood flow; PEA was prevented in all instances. However, we could not find any evidence for a recovery in oxidative metabolism in the group receiving hydroxocobalamin, as blood lactate remained elevated and even continued to rise after 1 h, despite restored hemodynamics. This, along with an unaltered recovery of H2S kinetics, suggests that hydroxocobalamin did not act through a mechanism of H2S trapping.. In this sheep model, there was a high risk for cardiac arrest, by PEA, persisting up to 10 min after H2S exposure. Very high dose of hydroxocobalamin (5 g), injected very early after the cessation of H2S exposure, improved cardiac contractility and prevented PEA. Topics: Animals; Blood Pressure; Disease Models, Animal; Heart Arrest; Hemodynamics; Hydrogen Sulfide; Hydroxocobalamin; Injections, Intravenous; Sheep | 2015 |
Hydroxocobalamin and epinephrine both improve survival in a swine model of cyanide-induced cardiac arrest.
To determine whether hydroxocobalamin will improve survival compared with epinephrine and saline solution controls in a model of cyanide-induced cardiac arrest.. Forty-five swine (38 to 42 kg) were tracheally intubated, anesthetized, and central venous and arterial continuous cardiovascular monitoring catheters were inserted. Potassium cyanide was infused until cardiac arrest developed, defined as mean arterial pressure less than 30 mm Hg. Animals were treated with standardized mechanical chest compressions and were randomly assigned to receive one of 3 intravenous bolus therapies: hydroxocobalamin, epinephrine, or saline solution (control). All animals were monitored for 60 minutes after cardiac arrest. Additional epinephrine infusions were used in all arms of the study after return of spontaneous circulation for systolic blood pressure less than 90 mm Hg. A sample size of 15 animals per group was determined according to a power of 80%, a survival difference of 0.5, and an α of 0.05. Repeated-measure ANOVA was used to determine statistically significant changes between groups over time.. Baseline weight, time to arrest, and cyanide dose at cardiac arrest were similar in the 3 groups. Coronary perfusion pressures with chest compressions were greater than 15 mm Hg in both treatment groups indicating sufficient compression depth. Zero of 15 (95% confidence interval [CI] 0% to 25%) animals in the control group, 11 of 15 (73%; 95% CI 48% to 90%) in the hydroxocobalamin group, and 11 of 15 (73%; 95% CI 48% to 90%) in the epinephrine group survived to the conclusion of the study (P<.001). The proportion of animals with return of spontaneous circulation at 5 minutes was 4 of 15 (27%; 95% CI 10% to 52%), and that of return of spontaneous circulation at 10 minutes was 11 of 15 (73%; 95% CI 48% to 90%) in the 2 treatment groups. Additional epinephrine infusion after return of spontaneous circulation was administered for hypotension in 2 of 11 (18%; 95% CI 4% to 48%) hydroxocobalamin animals and in 11 of 11 (100%; 95% CI 70% to 100%) of the epinephrine animals (P<.001). At 60 minutes, serum lactate was significantly lower in the hydroxocobalamin group compared with the epinephrine group (4.9 [SD 2.2] versus 12.3 [SD 2.2] mmol/L), and the pH was significantly higher (7.34 [SD 0.03] versus 7.15 [SD 0.07]). Serial blood cyanide levels in the hydroxocobalamin group were also lower than that of the epinephrine group from cardiac arrest through the conclusion of the study.. Intravenous hydroxocobalamin and epinephrine both independently improved survival compared with saline solution control in our swine model of cyanide-induced cardiac arrest. Hydroxocobalamin improved mean arterial pressure and pH, decreased blood lactate and cyanide levels, and decreased the use of rescue epinephrine therapy compared with that in the epinephrine group. Topics: Animals; Antidotes; Blood Pressure; Cyanides; Disease Models, Animal; Epinephrine; Female; Heart Arrest; Heart Massage; Hydrogen-Ion Concentration; Hydroxocobalamin; Injections, Intravenous; Lactates; Male; Swine | 2012 |
Hydrogen cyanide poisoning in a prison environment: a case report.
Cyanide poisoning is an important source of morbidity and mortality from smoke exposure in structural fires. This case involved administration of a cyanide antidote to a prisoner (male, 23 years) in France, discovered in cardiorespiratory arrest after about 30 minutes exposure to smoke from a burning mattress during an apparent suicide attempt. Smoke exposure, circulatory failure during initial resuscitation, and elevated blood cyanide and lactate led to the diagnosis of cyanide poisoning. Hydroxocobalamin (Cyanokit®), 5 g intravenous) was given immediately and on arrival at the hospital. Cardiopulmonary resuscitation restored cardiovascular function after 33 minutes. There were no neurological or other sequelae. Timely hydroxocobalamin administration contributed to full recovery from cardiorespiratory arrest secondary to cyanide poisoning from smoke inhalation. Hydroxocobalamin should be available to emergency medical teams attending fire scenes. Topics: Critical Care; Electrocardiography; France; Heart Arrest; Humans; Hydrogen Cyanide; Hydroxocobalamin; Inhalation; Male; Prisoners; Smoke; Young Adult | 2011 |
Cyanide poisoning and cardiac disorders: 161 cases.
Inhalation of hydrogen cyanide from smoke in structural fires is common, but cardiovascular function in these patients is poorly documented.. The objective was to study the cardiac complications of cyanide poisoning in patients who received early administration of a cyanide antidote, hydroxocobalamin (Cyanokit; Merck KGaA, Darmstadt, Germany [in the United States, marketed by Meridian Medical Technologies, Bristol, TN]).. The medical records of 161 fire survivors with suspected or confirmed cyanide poisoning were reviewed in an open, multicenter, retrospective review of cases from the Emergency Medical Assistance Unit (Service d'Aide Médical d'Urgence) in France.. Cardiac arrest (61/161, 58 asystole, 3 ventricular fibrillation), cardiac rhythm disorders (57/161, 56 supraventricular tachycardia), repolarization disorders (12/161), and intracardiac conduction disorders (5/161) were observed. Of the total 161 patients studied, 26 displayed no cardiac disorder. All patients were given an initial dose of 5 g of hydroxocobalamin. Non-responders received a second dose of 5 g of hydroxocobalamin. Of the patients initially in cardiac arrest, 30 died at the scene, 24 died in hospital, and 5 survived without cardiovascular sequelae. Cardiac disorders improved with increasing doses of hydroxocobalamin, and higher doses of the antidote seem to be associated with a superior outcome in patients with initial cardiac arrest.. Cardiac complications are common in cyanide poisoning in fire survivors. Topics: Adult; Aged; Aged, 80 and over; Antidotes; Arrhythmias, Cardiac; Child, Preschool; Cyanides; Dose-Response Relationship, Drug; Emergency Medical Services; Female; Heart Arrest; Humans; Hydroxocobalamin; Male; Middle Aged; Retrospective Studies; Smoke Inhalation Injury; Survival Analysis; Young Adult | 2010 |
Hydroxocobalamin for acute cyanide poisoning in smoke inhalation.
Topics: Adult; Antidotes; Heart Arrest; Humans; Hydrogen Cyanide; Hydroxocobalamin; Male; Smoke Inhalation Injury; Survival Rate | 2008 |
[Sodium azide--clinical course of the poisoning and treatment].
Sodium azide poisonings occur very rarely. The mechanism of sodium azide toxic effect has not yet been fully explained. Despite the lack of an explicit procedure for the cases of sodium azide poisonings, in vitro tests and rare case reports suggest that treatment with antidotes for cyanide poisoning victims can be effective. This study describes two cases of suicidal sodium azide ingestion. Case 1. 30-year-old male ingested ca. 180 mg of sodium azide. On admission to hospital, within 4 hours from poisoning, the man complained of dizziness and anxiety. Physical examination revealed horizontal nystagmus, flapping tremor, HR 135/min. In laboratory tests, higher blood concentration of lactates (3 mmol/l) was detected, as well as lower potassium concentration (3.4 mmol/L) and increased transaminase activity (ALT 74 U/l, AST 90 U/l). Electrocardiographic tests showed a negative T wave in limb lead III. Other results were within normal. As the patient ingested a toxic dose of sodium azide, he was treated according to the therapy prescription for cyanide poisoning (amyl nitrite inhalation followed by intravenous administration of sodium nitrite and sodium thiosulphate). ECG record of the last day of hospitalization (7th day of treatment) showed negative T waves in lead III, V4-V6. He was discharged from hospital in good condition. Case 2.23-year-old male ingested 10 g of sodium azide 1.5 hours prior to admission to hospital. At the beginning, the patient's condition was good, but it changed to critical state within the first hours of hospitalization. He developed a deep coma, respiratory and circulatory insufficiency, metabolic acidosis, cardiac dysrrhythmias and anuria. Cardiac activity monitoring showed alternating tachycardia (140 beats per minute) and bradycardia (48 beats per minute), numerous additional supraventricular and ventricular extrasystoles and sinus dysrrhythmia. Cardiac arrest (asystolia) occurred twice, the second incident with fatal outcome. The patient received supportive therapy, he was also treated according to the therapy prescription for cyanide poisoning. Circulatory disturbances observed in both cases have been described in literature as symptoms of sodium azide poisoning. However, available literature data are scarce and lack systematization, most of them coming from several decades ago. The lack of patient's consent for detailed examination of circulatory system and liver made it impossible to gather further knowledge on the subject. T Topics: Adult; Antidotes; Arrhythmias, Cardiac; Bradycardia; Clinical Protocols; Dose-Response Relationship, Drug; Electrocardiography; Fatal Outcome; Heart Arrest; Humans; Hydroxocobalamin; Hypokalemia; Lactates; Male; Monitoring, Physiologic; Nitrates; Pentanols; Poisoning; Sodium Azide; Sodium Nitrite; Suicide, Attempted; Thiosulfates; Transaminases; Treatment Outcome | 2007 |
Prehospital administration of hydroxocobalamin for smoke inhalation-associated cyanide poisoning: 8 years of experience in the Paris Fire Brigade.
This article reports the results of a retrospective study of 8 years of experience of the Paris Fire Brigade with the prehospital use of hydroxocobalamin.. The head physician at the Paris Fire Brigade extracted and summarized data from standardized forms completed at the fire scene and, when available, hospital reports to assess survival status and clinical parameters associated with the use of hydroxocobalamin for each patient who received it for smoke inhalation-associated cyanide poisoning from 1995 to 2003.. Of the 101 patients administered hydroxocobalamin, 30 survived, 42 died (17 at the fire scene and 25 at the intensive-care unit), and survival status was not known in the remaining 29 patients. Among the 72 patients for whom survival status was known, survival rate was 41.7% after the administration of hydroxocobalamin. Of the 38 patients found in cardiac arrest, 21 had a return of spontaneous circulation during prehospital care. Of the 12 patients who were initially hemodynamically unstable (systolic blood pressure 0 to < or =90 mmHg), 9 recovered systolic blood pressure an average of 30.6 minutes after the start of hydroxocobalamin infusion. Among nonsedated patients in the sample as a whole (n = 52), mean (SD) Glasgow coma scale score improved from 7.9 (5.4) initially to 8.5 (5.7) after administration of hydroxocobalamin. Among nonsedated patients who were initially neurologically impaired (n = 18), Glasgow coma scale score improved in 9 patients, did not change in 8 patients, and worsened in 1 patient. Two adverse events--red or pink coloration of urine or skin (n = 5) and cutaneous rash (n = 1)--were assessed as being possibly related to hydroxocobalamin.. Hydroxocobalamin has a risk:benefit ratio rendering it suitable for prehospital use in the management of acute cyanide poisoning caused by smoke inhalation. Topics: Adult; Antidotes; Cyanides; Emergency Medical Services; Female; Fires; Glasgow Coma Scale; Heart Arrest; Hemodynamics; Humans; Hydroxocobalamin; Male; Middle Aged; Paris; Poisoning; Retrospective Studies; Smoke Inhalation Injury; Survival Analysis | 2006 |