hydroxocobalamin and Disease-Models--Animal

hydroxocobalamin has been researched along with Disease-Models--Animal* in 15 studies

Other Studies

15 other study(ies) available for hydroxocobalamin and Disease-Models--Animal

ArticleYear
Comparison of hydroxocobalamin with other resuscitative fluids in volume-controlled and uncontrolled hemorrhage models in swine ( Sus-scrofa ).
    The journal of trauma and acute care surgery, 2023, 08-01, Volume: 95, Issue:2S Suppl 1

    Traumatic hemorrhage is the leading cause of preventable death in military environments. Treatment with resuscitative fluids and blood components is based on availability, thus, frequently unavailable in the prehospital setting, due to lack of resources and costs. Hydroxocobalamin (HOC), increases blood pressure via nitric oxide scavenging. We evaluated HOC as a resuscitation fluid, in two swine hemorrhage models. Our objectives were to (1) evaluate whether HOC treatment following hemorrhagic shock improves hemodynamic parameters and (2) determine whether those effects are comparable to whole blood (WB) and lactated ringers (LR).. Yorkshire swine (S us scrofa ) (n = 72) were used in models of controlled hemorrhage (CH) (n = 36) and uncontrolled hemorrhage (UH) (n = 36). Randomized animals received treatment with 500 mL of either WB, LR, HOC (150 mg/kg), followed by a six-hour observation (n = 6 each group). Survival, hemodynamics, blood gases (ABGs) and chemistries were collected. Data reported as mean ± standard error of the mean and statistical analysis by ANOVA ( p < 0.05).. Blood loss for CH was 41% ± 0.02 versus 33% ± 0.07 for UH. For CH, HOC treatment maintained higher systolic blood pressure (sBP, mm Hg) compared with WB and LR (72 ± 1.1; 60 ± 0.8; 58 ± 1.6; respectively). Heart rate (HR), cardiac output (CO), Sp o2 and vascular resistance were comparable with WB and LR. The ABG values were comparable between HOC and WB. For UH, HOC treatment maintained sBP levels comparable to WB and higher than LR (70 ± 0.9; 73 ± 0.5; 56 ± 1.2). HR, CO, Sp o2 , and systemic vascular resistance were comparable between HOC and WB. Survival, hemodynamics, blood gases were comparable between HOC and WB. No survival differences were found between cohorts.. Hydroxocobalamin treatment improved hemodynamic parameters and Ca 2+ levels compared with LR and equivalent to WB, in both models. Hydroxocobalamin may be a viable alternative when WB is not available.

    Topics: Animals; Disease Models, Animal; Gases; Hemodynamics; Hemorrhage; Hydroxocobalamin; Isotonic Solutions; Resuscitation; Shock, Hemorrhagic; Swine

2023
Efficacy of Intravenous Hydroxocobalamin for Treatment of Sodium Methanethiolate Exposure in a Swine Model (Sus scrofa) of Severe Methanethiol Toxicity.
    Journal of medical toxicology : official journal of the American College of Medical Toxicology, 2020, Volume: 16, Issue:4

    Methanethiol is a highly toxic chemical present in crude oil and natural gas. At high concentrations, methanethiol causes metabolic acidosis, seizures, myocardial infarction, coma, and death. Occupational Health and Safety Administration lists methanethiol as a potential terrorist weapon. Methanethiol blocks the electron transport chain, resulting in lactic acidosis and acidemia. There is no specific treatment for methanethiol. Our objective was to measure the efficacy of intravenous (IV) hydroxocobalamin (HOC) versus no treatment (control) in methanethiol-induced apnea in a swine model.. Sixteen anesthetized swine received IV sodium methanethiolate to apnea and were randomized to receive either IV HOC or no treatment. Physiologic and laboratory parameters were monitored throughout the study. Power analysis indicated that 8 animals per group would be sufficient to find a moderate effect (f = 0.24) with 2 groups, α = 0.05, and 80% power.. Both groups were similar in baseline characteristics. Following treatment, the HOC group had significantly higher heart rate and blood pressure at 5-10 minutes post-apnea, higher systemic vascular resistance at 5 minutes post-apnea, higher tidal volume, higher end-tidal carbon dioxide, and lower end-tidal oxygen 10-15 minutes post-apnea compared with controls. None of the animals survived to the end of the study (60 minutes). The Kaplan-Meier survival curves were significantly different between cohorts (log-rank p = 0.0321), with the HOC group surviving longer than controls (32.4 ± 7.3 vs. 25.8 ± 1.0 minutes).. In our model of intravenous methanethiolate poisoning, IV HOC administration resulted in a transient improvement in vital signs and prolonged time to death; however, it did not improve survival.

    Topics: Animals; Antidotes; Apnea; Disease Models, Animal; Hydroxocobalamin; Infusions, Intravenous; Lung; Sulfhydryl Compounds; Sus scrofa; Time Factors

2020
A prospective, randomized trial of intravenous hydroxocobalamin versus noradrenaline or saline for treatment of lipopolysaccharide-induced hypotension in a swine model.
    Clinical and experimental pharmacology & physiology, 2019, Volume: 46, Issue:3

    Early, non-clinical studies support the use of hydroxocobalamin to treat sepsis-induced hypotension, but there is no translational, large animal model. The objective of this study was to compare survival in a sepsis model where large swine had endotoxaemia induced with lipopolysaccharide (LPS) and were treated with intravenous hydroxocobalamin (HOC), noradrenaline (NA), or saline. Thirty swine (45-55 kg) were anaesthetized, intubated, and instrumented with continuous femoral and pulmonary artery pressure monitoring. Hypotension, predefined as 50% of baseline, was induced with LPS. Animals then received HOC, NA, or saline and monitored for 3 hours. The main outcome was survival to the conclusion of the study. Using a power of 80% and an alpha of 0.05, 10 animals were used per group. Secondary outcomes included: mean arterial pressure (MAP), systemic vascular resistance (SVR) and cardiac output (CO) along with several markers of sepsis. No differences were detected between groups at baseline or after hypotension. The survival distributions of the three groups were significantly different with more HOC animals surviving (10/10) compared with NA (8/10) or Saline (5/10) (log-rank P < 0.03). MAP was found to be higher in both the HOC and NA groups and HOC achieved the highest SVR. In this large animal, translational study of an endotoxaemic model of sepsis, hydroxocobalamin improved survival when compared with saline.

    Topics: Administration, Intravenous; Animals; Biomarkers; Disease Models, Animal; Female; Gases; Hemodynamics; Hydroxocobalamin; Hypotension; Lipopolysaccharides; Norepinephrine; Saline Solution; Shock, Septic; Swine

2019
Ethanolamine utilization supports Clostridium perfringens growth in infected tissues.
    Microbial pathogenesis, 2018, Volume: 119

    Clostridium perfringens possesses the ethanolamine (EA) utilization (eut) system encoded within the eut operon, which utilizes the EA as a carbon, nitrogen and energy source. To determine the role of the eut system in C. perfringens growth, an in-frame deletion of the eutABC genes was made in strain HN13 to generate the eutABC-deleted mutant strain HY1701. Comparison of HN13 and HY1701 growth in media supplemented with 1.0% glucose and/or 1.0% EA showed that glucose enhanced the growth of both strains, whereas EA enhanced HN13 growth, but not that of HY1701, indicating that the eut system is necessary for C. perfringens to utilize EA. The two-component regulatory system EutVW is needed to induce eut gene expression in response to EA whereas the global virulence regulator VirRS differentially controlled eut gene expression depending on glucose and EA availability. To assess the role of the eut system in vivo, an equal number of HN13 and HY1701 cells were injected into the right thigh muscles of mice. Mice infected with HY1701 showed fewer symptoms than those injected with HN13. The mortality rate of mice infected with HY1701 tended to be lower than for mice infected with HN13. In addition, in infected tissues from mice injected with a mixture of HN13 and HY1701, HN13 outnumbered HY1701. PCR screening demonstrated that C. perfringens isolated from gas gangrene and sporadic diarrhea cases carried both eut genes and the perfringolysin O gene (pfoA) as well as the phospholipase C gene (plc). However, pfoA was not detected in isolates from food poisoning patients and healthy volunteers. Culture supernatants prepared from HN13 grown in media containing 7.5% sheep red blood cells induced significantly higher eutB expression levels compared to those from plc- and/or pfoA-deletion mutants. Together, these results indicate that the eut system plays a nutritional role for C. perfringens during histolytic infection.

    Topics: Animals; Bacterial Toxins; Clostridium perfringens; Disease Models, Animal; Ethanolamine; Foodborne Diseases; Gas Gangrene; Gene Expression Regulation, Bacterial; Genes, Bacterial; Hemolysin Proteins; Humans; Hydroxocobalamin; Male; Mice; Mortality; Operon; Sequence Deletion; Sheep; Type C Phospholipases; Virulence

2018
Intravenous Hydroxocobalamin Versus Hextend Versus Control for Class III Hemorrhage Resuscitation in a Prehospital Swine Model.
    Military medicine, 2018, 11-05, Volume: 183, Issue:11-12

    Hydroxyethyl starch (Hextend) has been used for hemorrhagic shock resuscitation, however, hydroxyethyl starch may be associated with adverse outcomes.. To compare systolic blood pressure (sBP) in animals that had 30% of their blood volume removed and treated with intravenous hydroxocobalamin, hydroxyethyl starch, or no fluid.. Twenty-eight swine (45-55 kg) were anesthetized and instrumented with continuous femoral and pulmonary artery pressure monitoring. Animals were hemorrhaged 20 mL/kg over 20 minutes and then administered 150 mg/kg IV hydroxocobalamin in 180 mL saline, 500 mL hydroxyethyl starch, or no fluid and monitored for 60 minutes. Data were modeled using repeated measures multivariate analysis of variance.. There were no significant differences before treatment. At 20 minutes after hemorrhage, there was no significant difference in mean sBP between treated groups, however, control animals displayed significantly lower mean sBP (p < 0.001). Mean arterial pressure and heart rate improved in the treated groups but not in the control group (p < 0.02). Prothrombin time was longer and platelet counts were lower in the Hextend group (p < 0.05). Moreover, thromboelastography analysis showed longer clotting (K) times (p < 0.05) for the hydroxyethyl starch-treated group.. Hydroxocobalamin restored blood pressure more effectively than no treatment and as effectively as hydroxyethyl starch but did not adversely affect coagulation.

    Topics: Administration, Intravenous; Animals; Blood Coagulation; Blood Pressure; Disease Models, Animal; Emergency Medical Services; Hemorrhage; Hydroxocobalamin; Hydroxyethyl Starch Derivatives; Resuscitation; Swine

2018
Efficacy of Intravenous Cobinamide Versus Hydroxocobalamin or Saline for Treatment of Severe Hydrogen Sulfide Toxicity in a Swine (Sus scrofa) Model.
    Academic emergency medicine : official journal of the Society for Academic Emergency Medicine, 2017, Volume: 24, Issue:9

    Hydrogen sulfide (H. There were no significant differences in baseline variables. Moreover, there were no significant differences in the mg/kg dose of NaHS (5.6 mg/kg; p = 0.45) required to produce apnea. Whereas all of the cobinamide-treated animals survived (8/8), none of the control (0/8) or hydroxocobalamin (0/8)-treated animals survived. Mean (±SD) time to spontaneous ventilation in the cobinamide-treated animals was 3.2 (±1.1) minutes.. Cobinamide successfully rescued the severely NaHS-poisoned swine from apnea in the absence of assisted ventilation.

    Topics: Administration, Intravenous; Animals; Antidotes; Apnea; Cobamides; Disease Models, Animal; Female; Hydrogen Sulfide; Hydroxocobalamin; Sodium Chloride; Sulfides; Sus scrofa; Swine

2017
High-dose hydroxocobalamin administered after H2S exposure counteracts sulfide-poisoning-induced cardiac depression in sheep.
    Clinical toxicology (Philadelphia, Pa.), 2015, Volume: 53, Issue:1

    Severe H2S poisoning leads to death by rapid respiratory and cardiac arrest, the latter can occur within seconds or minutes in severe forms of intoxication.. To determine the time course and the nature of H2S-induced cardiac arrest and the effects of high-dose hydroxocobalamin administered after the end of sulfide exposure.. NaHS was infused in 16 sedated mechanically ventilated sheep to reach concentrations of H2S in the blood, which was previously found to lead to cardiac arrest within minutes following the cessation of H2S exposure. High-dose hydroxocobalamin (5 g) or saline solution was administered intravenously, 1 min after the cessation of NaHS infusion.. All animals were still alive at the cessation of H2S exposure. Three animals (18%) presented a cardiac arrest within 90 s and were unable to receive any antidote or vehicle. In the animals that survived long enough to receive either hydroxocobalamin or saline, 71% (5/7) died in the control group by cardiac arrest within 10 min. In all instances, cardiac arrest was the result of a pulseless electrical activity (PEA). In the group that received the antidote, intravenous injection of 5 g of hydroxocobalamin provoked an abrupt increase in blood pressure and blood flow; PEA was prevented in all instances. However, we could not find any evidence for a recovery in oxidative metabolism in the group receiving hydroxocobalamin, as blood lactate remained elevated and even continued to rise after 1 h, despite restored hemodynamics. This, along with an unaltered recovery of H2S kinetics, suggests that hydroxocobalamin did not act through a mechanism of H2S trapping.. In this sheep model, there was a high risk for cardiac arrest, by PEA, persisting up to 10 min after H2S exposure. Very high dose of hydroxocobalamin (5 g), injected very early after the cessation of H2S exposure, improved cardiac contractility and prevented PEA.

    Topics: Animals; Blood Pressure; Disease Models, Animal; Heart Arrest; Hemodynamics; Hydrogen Sulfide; Hydroxocobalamin; Injections, Intravenous; Sheep

2015
A prospective, randomized trial of intravenous hydroxocobalamin versus whole blood transfusion compared to no treatment for Class III hemorrhagic shock resuscitation in a prehospital swine model.
    Academic emergency medicine : official journal of the Society for Academic Emergency Medicine, 2015, Volume: 22, Issue:3

    The objective was to compare systolic blood pressure (sBP) over time in swine that have had 30% of their blood volume removed (Class III shock) and treated with intravenous (IV) whole blood or IV hydroxocobalamin, compared to nontreated control animals.. Thirty swine (45 to 55 kg) were anesthetized, intubated, and instrumented with continuous femoral and pulmonary artery pressure monitoring. Animals were hemorrhaged a total of 20 mL/kg over a 20-minute period. Five minutes after hemorrhage, animals were randomly assigned to receive 150 mg/kg IV hydroxocobalamin solubilized in 180 mL of saline, 500 mL of whole blood, or no treatment. Animals were monitored for 60 minutes thereafter. A sample size of 10 animals per group was determined based on a power of 80% and an alpha of 0.05 to detect an effect size of at least a 0.25 difference (>1 standard deviation) in mean sBP between groups. sBP values were analyzed using repeated-measures analysis of variance (RANOVA). Secondary outcome data were analyzed using repeated-measures multivariate analysis of variance (RMANOVA).. There were no significant differences between hemodynamic parameters of IV hydroxocobalamin versus whole blood versus control group at baseline (MANOVA; Wilks' lambda; p = 0.868) or immediately posthemorrhage (mean sBP = 47 mm Hg vs. 41 mm Hg vs. 37 mm Hg; mean arterial pressure = 39 mm Hg vs. 28 mm Hg vs. 34 mm Hg; mean serum lactate = 1.2 mmol/L vs. 1.4 mmol/L vs. 1.4 mmol/L; MANOVA; Wilks' lambda; p = 0.348). The outcome RANOVA model detected a significant difference by time between groups (p < 0.001). Specifically, 10 minutes after treatment, treated animals showed a significant increase in mean sBP compared to nontreated animals (mean sBP = 76.3 mm Hg vs. 85.7 mm Hg vs. 51.1 mm Hg; p < 0.001). RMANOVA modeling of the secondary data detected a significant difference in mean arterial pressure, heart rate, and serum lactate (p < 0.001). Similar to sBP, 10 minutes after treatment, treated animals showed a significant increase in mean arterial pressure compared to nontreated animals (mean arterial pressure = 67.7 mm Hg vs. 61.4 mm Hg vs. 40.5 mm Hg). By 10 minutes, mean heart rate was significantly slower in treated animals compared to nontreated animals (mean heart rate = 97.3 beats/min vs. 95.2 beats/min vs. 129.5 beats/min; p < 0.05). Serum lactate, an early predictor of shock, continued to rise in the control group, whereas it did not in treated animals. Thirty minutes after treatment, serum lactate values of treated animals were significantly lower compared to nontreated animals (p < 0.05). This trend continued throughout the 60-minute observation period such that 60-minute values for lactate were 1.4 mmol/L versus 1.1 mmol/L versus 3.8 mmol/L. IV hydroxocobalamin produced a statistically significant increase in systemic vascular resistance compared to control, but not whole blood, with a concomitant decrease in cardiac output.. Intravenous hydroxocobalamin was more effective than no treatment and as effective as whole blood transfusion, in reversing hypotension and inhibiting rises in serum lactate in this prehospital, controlled, Class III swine hemorrhage model.

    Topics: Animals; Blood Pressure; Blood Transfusion; Disease Models, Animal; Female; Hemodynamics; Hydroxocobalamin; Hypotension; Injections, Intravenous; Monitoring, Physiologic; Prospective Studies; Random Allocation; Resuscitation; Shock, Hemorrhagic; Swine; Vascular Resistance

2015
Intraosseous hydroxocobalamin versus intravenous hydroxocobalamin compared to intraosseous whole blood or no treatment for hemorrhagic shock in a swine model.
    American journal of disaster medicine, 2015,Autumn, Volume: 10, Issue:3

    To determine if intraosseous (IO) hydroxocobalamin can improve systolic blood pressure (SBP) in a swine model after severe hemorrhagic shock.. Thirty six swine (45-55 kg) were anesthetized, intubated, and instrumented with continuous femoral and pulmonary artery pressure monitoring and then hemorrhaged such that 30 percent of their blood volume was extracted over 20 minutes. Five minutes later, animals were randomly assigned to receive 500 mL IO whole blood, 150 mg/kg IO or intravenous (IV) hydroxocobalamin in 180 mL of saline, or no treatment and then monitored for 60 minutes. A sample size of eight animals per group was based on a power of 80 percent, an alpha of 0.05, and a small effect size to detect a difference in SBP between groups. Outcome data were analyzed using repeated measures analysis of variance (RMANOVA).. RMANOVA outcome analysis detected a significant difference between groups (p < 0.05). IO whole blood, IO hydroxocobalamin, and IV hydroxocobalamin groups were similar to each other, but significantly different compared to controls regarding SBP, mean arterial pressure (MAP), systemic vascular resistance, and heart rate. Differences in SBP and MAP were sustained throughout the experiment. At 60 minutes, the comparison among the groups, IO whole blood, IO hydroxocobalamin, IV hydroxocobalamin, and control, was the following: SBP 78.2 versus 83.7 versus 75.1 versus 55.3 mm Hg; MAP 62.7 versus 65 versus 60 versus 43 mm Hg. There was a significant interaction by time in lactate values (p < 0.01) such that control animal lactate values increased over time (3.3 mmol/L) compared to IO whole blood, IO or IV hydroxocobalamin treated animals (1.1, 1.6, 1.3 mmol/L).. IO hydroxocobalamin improved SBP, MAP, compared to no treatment and was similar to IO whole blood and IV hydroxocobalamin in this animal model of severe hemorrhage. Moreover, whereas serum lactate was improving in all treated groups, it was deteriorating in the control group.

    Topics: Animals; Blood Pressure; Disease Models, Animal; Female; Heart Rate; Hematinics; Hydroxocobalamin; Infusions, Intraosseous; Infusions, Intravenous; Shock, Hemorrhagic; Swine

2015
The vitamin B12 analog cobinamide is an effective hydrogen sulfide antidote in a lethal rabbit model.
    Clinical toxicology (Philadelphia, Pa.), 2014, Volume: 52, Issue:5

    Hydrogen sulfide (H2S) is a highly toxic gas for which no effective antidotes exist. It acts, at least in part, by binding to cytochrome c oxidase, causing cellular asphyxiation and anoxia. We investigated the effects of three different ligand forms of cobinamide, a vitamin B12 analog, to reverse sulfide (NaHS) toxicity.. New Zealand white rabbits received a continuous intravenous (IV) infusion of NaHS (3 mg/min) until expiration or a maximum 270 mg dose. Animals received six different treatments, administered at the time when they developed signs of severe toxicity: Group 1-saline (placebo group, N = 9); Group 2--IV hydroxocobalamin (N = 7); Group 3--IV aquohydroxocobinamide (N = 6); Group 4--IV sulfitocobinamide (N = 6); Group 5--intramuscular (IM) sulfitocobinamide (N = 6); and Group 6-IM dinitrocobinamide (N = 8). Blood was sampled intermittently, and systemic blood pressure and deoxygenated and oxygenated hemoglobin were measured continuously in peripheral muscle and over the brain region; the latter were measured by diffuse optical spectroscopy (DOS) and continuous wave near infrared spectroscopy (CWNIRS).. Compared with the saline controls, all cobinamide derivatives significantly increased survival time and the amount of NaHS that was tolerated. Aquohydroxocobinamide was most effective (261.5 ± 2.4 mg NaHS tolerated vs. 93.8 ± 6.2 mg in controls, p < 0.0001). Dinitrocobinamide was more effective than sulfitocobinamide. Hydroxocobalamin was not significantly more effective than the saline control.. Cobinamide is an effective agent for inhibiting lethal sulfide exposure in this rabbit model. Further studies are needed to determine the optimal dose and form of cobinamide and route of administration.

    Topics: Animals; Antidotes; Cobamides; Disease Models, Animal; Hemoglobins; Hydrogen Sulfide; Hydroxocobalamin; Infusions, Intravenous; Injections, Intramuscular; Injections, Intravenous; Rabbits; Spectroscopy, Near-Infrared; Sulfides; Survival Rate

2014
Intravenous cobinamide versus hydroxocobalamin for acute treatment of severe cyanide poisoning in a swine (Sus scrofa) model.
    Annals of emergency medicine, 2014, Volume: 64, Issue:6

    Hydroxocobalamin is a Food and Drug Administration-approved antidote for cyanide poisoning. Cobinamide is a potential antidote that contains 2 cyanide-binding sites. To our knowledge, no study has directly compared hydroxocobalamin with cobinamide in a severe, cyanide-toxic large-animal model. Our objective is to compare the time to return of spontaneous breathing in swine with acute cyanide-induced apnea treated with intravenous hydroxocobalamin, intravenous cobinamide, or saline solution (control).. Thirty-three swine (45 to 55 kg) were intubated, anesthetized, and instrumented (continuous mean arterial pressure and cardiac output monitoring). Anesthesia was adjusted to allow spontaneous breathing with FiO2 of 21% during the experiment. Cyanide was continuously infused intravenously until apnea occurred and lasted for 1 minute (time zero). Animals were then randomly assigned to receive intravenous hydroxocobalamin (65 mg/kg), cobinamide (12.5 mg/kg), or saline solution and monitored for 60 minutes. A sample size of 11 animals per group was selected according to obtaining a power of 80%, an α of .05, and an SD of 0.17 in mean time to detect a 20% difference in time to spontaneous breathing. We assessed differences in time to death among groups, using Kaplan-Meier estimation methods, and compared serum lactate, blood pH, cardiac output, mean arterial pressure, respiratory rate, and minute ventilation time curves with repeated-measures ANOVA.. Baseline weights and vital signs were similar among groups. The time to apnea and cyanide dose required to achieve apnea were similar. At time zero, mean cyanide blood and lactate concentrations and reduction in mean arterial pressure from baseline were similar. In the saline solution group, 2 of 11 animals survived compared with 10 of 11 in the hydroxocobalamin and cobinamide groups (P<.001 between the 2 treated groups and the saline solution group). Time to return of spontaneous breathing after antidote was similar between hydroxocobalamin and cobinamide (1 minute 48 seconds versus 1 minute 49 seconds, respectively). Blood cyanide concentrations became undetectable at the end of the study in both antidote-treated groups, and no statistically significant differences were detected between the 2 groups for mean arterial pressure, cardiac output, respiratory rate, lactate, or pH.. Both hydroxocobalamin and cobinamide rescued severely cyanide-poisoned swine from apnea in the absence of assisted ventilation. The dose of cobinamide was one fifth that of hydroxocobalamin.

    Topics: Animals; Antidotes; Apnea; Cobamides; Cyanides; Disease Models, Animal; Female; Hemodynamics; Hydroxocobalamin; Infusions, Intravenous; Poisoning; Random Allocation; Swine

2014
Intraosseous versus intravenous infusion of hydroxocobalamin for the treatment of acute severe cyanide toxicity in a Swine model.
    Academic emergency medicine : official journal of the Society for Academic Emergency Medicine, 2014, Volume: 21, Issue:11

    Easily administrated cyanide antidotes are needed for first responders, military troops, and emergency department staff after cyanide exposure in mass casualty incidents or due to smoke inhalation during fires involving many victims. Hydroxocobalamin has proven to be an effective antidote, but cannot be given intramuscularly because the volume of diluent needed is too large. Thus, intraosseous (IO) infusion may be an alternative, as it is simple and has been recommended for the administration of other resuscitation drugs. The primary objective of this study was to compare the efficacy of IO delivery of hydroxocobalamin to intravenous (IV) injection for the management of acute cyanide toxicity in a well-described porcine model.. Twenty-four swine (45 to 55 kg) were anesthetized, intubated, and instrumented with continuous mean arterial pressure (MAP) and cardiac output monitoring. Cyanide was continuously infused until severe hypotension (50% of baseline MAP), followed by IO or IV hydroxocobalamin treatment. Animals were randomly assigned to receive IV (150 mg/kg) or IO (150 mg/kg) hydroxocobalamin and monitored for 60 minutes after start of antidotal infusion. The primary outcome measure was the change in MAP after antidotal treatment from onset of hypotension (time zero) to 60 minutes. A sample size of 12 animals per group was determined by group size analysis based on power of 80% to detect a one standard deviation of the mean MAP between the groups with an alpha of 0.05. Whole blood cyanide, lactate, pH, nitrotyrosine (nitric oxide marker) levels, cerebral and renal near infrared spectrometry (NIRS) oxygenation, and inflammatory markers were also measured. Repeated-measures analysis of variance was used to determine statistically significant changes between groups over time.. At baseline and at the point of hypotension, physiologic parameters were similar between groups. At the conclusion of the study, 10 out of 12 animals in the IV group and 10 out of 12 in IO group survived (p = 1.0). Both groups demonstrated a similar return to baseline MAP (p = 0.997). Cardiac output, oxygen saturation, and systemic vascular resistance were also found to be similar between groups (p > 0.4), and no difference was detected between bicarbonate, pH, and lactate levels (p > 0.8). Cyanide levels were undetectable after the hydroxocobalamin infusion throughout the study in both groups (p = 1.0). Cerebral and renal NIRS oxygenation decreased in parallel to MAP during cyanide infusion and increased after antidote infusion in both groups. Serum nitrotyrosine increased during cyanide infusion in all animals and then decreased in both study arms after hydroxocobalamin infusion (p > 0.5). Serum cytokines increased starting at cyanide infusion and no difference was detected between groups (tumor necrosis factor-α, interleukin [IL]-1β, IL-6, and IL-10).. The authors found no difference in the efficacy of IV versus IO hydroxocobalamin in the treatment of severe cyanide toxicity in a validated porcine model.

    Topics: Animals; Blood Pressure; Cyanides; Disease Models, Animal; Female; Hydroxocobalamin; Hypotension; Infusions, Intraosseous; Infusions, Intravenous; Male; Monitoring, Physiologic; Severity of Illness Index; Swine; Vascular Resistance; Vitamin B Complex

2014
Hydroxocobalamin versus sodium thiosulfate for the treatment of acute cyanide toxicity in a swine (Sus scrofa) model.
    Annals of emergency medicine, 2012, Volume: 59, Issue:6

    We compare the efficacy of hydroxocobalamin to sodium thiosulfate to reverse the depressive effects on mean arterial pressure in a swine model of acute cyanide toxicity and gain a better understanding of the mechanism of action of the hydroxocobalamin in reversal of the toxicity.. Swine were intubated, anesthetized, and instrumented with central arterial and venous lines and a pulmonary artery catheter. Animals (n=36) were randomly assigned to one of 3 groups: hydroxocobalamin alone (150 mg/kg), sodium thiosulfate alone (413 mg/kg), or hydroxocobalamin (150 mg/kg)+sodium thiosulfate (413 mg/kg) and monitored for 60 minutes after the start of antidotal infusion. Cyanide was infused until severe hypotension developed, defined as blood pressure 50% of baseline mean arterial pressure. Repeated-measures ANOVA was used to determine statistically significant changes between groups over time.. Time to hypotension (25, 28, and 33 minutes), cyanide dose at hypotension (4.7, 5.0, and 5.6 mg/kg), and mean cyanide blood levels (3.2, 3.7, and 3.8 μg/mL) and lactate levels (7, 8.2, 8.3 and mmol/L) were similar. All 12 animals in the sodium thiosulfate group died compared with 2 of 12 in the hydroxocobalamin/sodium thiosulfate group and 1 of 12 in hydroxocobalamin group. No statistically significant differences were detected between the hydroxocobalamin and hydroxocobalamin/sodium thiosulfate groups for carbon monoxide, mean arterial pressure, cyanide levels, or mortality at 60 minutes. Lactate level (2.6 versus 2.1 mmol/L), pH (7.44 versus 7.42), and bicarbonate level (25 versus 26 mEq/L) at 60 minutes were also similar between groups.. Sodium thiosulfate failed to reverse cyanide-induced shock in our swine model of severe cyanide toxicity. Further, sodium thiosulfate was not found to be effective when added to hydroxocobalamin in the treatment of cyanide-induced shock. Hydroxocobalamin alone was again found to be effective for severe cyanide toxicity.

    Topics: Animals; Antidotes; Blood Pressure; Cyanides; Disease Models, Animal; Drug Therapy, Combination; Female; Heart Rate; Hydroxocobalamin; Male; Shock; Sus scrofa; Thiosulfates; Vascular Resistance

2012
Hydroxocobalamin and epinephrine both improve survival in a swine model of cyanide-induced cardiac arrest.
    Annals of emergency medicine, 2012, Volume: 60, Issue:4

    To determine whether hydroxocobalamin will improve survival compared with epinephrine and saline solution controls in a model of cyanide-induced cardiac arrest.. Forty-five swine (38 to 42 kg) were tracheally intubated, anesthetized, and central venous and arterial continuous cardiovascular monitoring catheters were inserted. Potassium cyanide was infused until cardiac arrest developed, defined as mean arterial pressure less than 30 mm Hg. Animals were treated with standardized mechanical chest compressions and were randomly assigned to receive one of 3 intravenous bolus therapies: hydroxocobalamin, epinephrine, or saline solution (control). All animals were monitored for 60 minutes after cardiac arrest. Additional epinephrine infusions were used in all arms of the study after return of spontaneous circulation for systolic blood pressure less than 90 mm Hg. A sample size of 15 animals per group was determined according to a power of 80%, a survival difference of 0.5, and an α of 0.05. Repeated-measure ANOVA was used to determine statistically significant changes between groups over time.. Baseline weight, time to arrest, and cyanide dose at cardiac arrest were similar in the 3 groups. Coronary perfusion pressures with chest compressions were greater than 15 mm Hg in both treatment groups indicating sufficient compression depth. Zero of 15 (95% confidence interval [CI] 0% to 25%) animals in the control group, 11 of 15 (73%; 95% CI 48% to 90%) in the hydroxocobalamin group, and 11 of 15 (73%; 95% CI 48% to 90%) in the epinephrine group survived to the conclusion of the study (P<.001). The proportion of animals with return of spontaneous circulation at 5 minutes was 4 of 15 (27%; 95% CI 10% to 52%), and that of return of spontaneous circulation at 10 minutes was 11 of 15 (73%; 95% CI 48% to 90%) in the 2 treatment groups. Additional epinephrine infusion after return of spontaneous circulation was administered for hypotension in 2 of 11 (18%; 95% CI 4% to 48%) hydroxocobalamin animals and in 11 of 11 (100%; 95% CI 70% to 100%) of the epinephrine animals (P<.001). At 60 minutes, serum lactate was significantly lower in the hydroxocobalamin group compared with the epinephrine group (4.9 [SD 2.2] versus 12.3 [SD 2.2] mmol/L), and the pH was significantly higher (7.34 [SD 0.03] versus 7.15 [SD 0.07]). Serial blood cyanide levels in the hydroxocobalamin group were also lower than that of the epinephrine group from cardiac arrest through the conclusion of the study.. Intravenous hydroxocobalamin and epinephrine both independently improved survival compared with saline solution control in our swine model of cyanide-induced cardiac arrest. Hydroxocobalamin improved mean arterial pressure and pH, decreased blood lactate and cyanide levels, and decreased the use of rescue epinephrine therapy compared with that in the epinephrine group.

    Topics: Animals; Antidotes; Blood Pressure; Cyanides; Disease Models, Animal; Epinephrine; Female; Heart Arrest; Heart Massage; Hydrogen-Ion Concentration; Hydroxocobalamin; Injections, Intravenous; Lactates; Male; Swine

2012
Hydroxocobalamin and sodium thiosulfate versus sodium nitrite and sodium thiosulfate in the treatment of acute cyanide toxicity in a swine (Sus scrofa) model.
    Annals of emergency medicine, 2010, Volume: 55, Issue:4

    Cyanide can cause severe hypotension with acute toxicity. To our knowledge, no study has directly compared hydroxocobalamin and sodium nitrite with sodium thiosulfate in an acute cyanide toxicity model. Our objective is to compare the return to baseline of mean arterial blood pressure between 2 groups of swine with acute cyanide toxicity and treated with hydroxocobalamin with sodium thiosulfate or sodium nitrite with sodium thiosulfate.. Twenty-four swine were intubated, anesthetized, and instrumented (continuous arterial and cardiac output monitoring) and then intoxicated with a continuous cyanide infusion until severe hypotension. The animals were divided into 2 arms of 12 each and then randomly assigned to intravenous hydroxocobalamin (150 mg/kg)+sodium thiosulfate (413 mg/kg) or sodium nitrite (10 mg/kg)+sodium thiosulfate (413 mg/kg) and monitored for 40 minutes after start of antidotal infusion. Twenty animals were needed for 80% power to detect a significant difference in outcomes (alpha 0.05). Repeated measures of analysis of covariance and post hoc t test were used for determining significance.. Baseline mean weights, time to hypotension (31 minutes 3 seconds versus 28 minutes 6 seconds), and cyanide dose at hypotension (5.6 versus 5.9 mg/kg) were similar. One animal in the hydroxocobalamin group and 2 animals in the sodium nitrite group died during antidote infusion and were excluded from analysis. Hydroxocobalamin resulted in a faster return to baseline mean arterial pressure, with improvement beginning at 5 minutes and lasting through the conclusion of the study (P<.05). No statistically significant difference was detected between groups for cardiac output, pulse rate, systemic vascular resistance, or mortality at 40 minutes post intoxication. Mean cyanide blood levels (4.03 versus 4.05 microg/mL) and lactate levels (peak 7.9 versus 8.1 mmol/L) at hypotension were similar. Lactate levels (5.1 versus 4.48 mmol/L), pH (7.40 versus 7.37), and base excess (-0.75 versus 1.27) at 40 minutes were also similar.. Hydroxocobalamin with sodium thiosulfate led to a faster return to baseline mean arterial pressure compared with sodium nitrite with sodium thiosulfate; however, there was no difference between the antidote combinations in mortality, serum acidosis, or serum lactate.

    Topics: Acidosis; Animals; Antidotes; Blood Pressure; Cyanides; Disease Models, Animal; Drug Therapy, Combination; Female; Hydroxocobalamin; Hypotension; Lactates; Male; Monitoring, Physiologic; Sodium Nitrite; Sus scrofa; Thiosulfates; Time Factors

2010