Page last updated: 2024-10-17

hydrogen sulfide and Diabetes Mellitus, Adult-Onset

hydrogen sulfide has been researched along with Diabetes Mellitus, Adult-Onset in 30 studies

Hydrogen Sulfide: A flammable, poisonous gas with a characteristic odor of rotten eggs. It is used in the manufacture of chemicals, in metallurgy, and as an analytical reagent. (From Merck Index, 11th ed)
hydrogen sulfide : A sulfur hydride consisting of a single sulfur atom bonded to two hydrogen atoms. A highly poisonous, flammable gas with a characteristic odour of rotten eggs, it is often produced by bacterial decomposition of organic matter in the absence of oxygen.
thiol : An organosulfur compound in which a thiol group, -SH, is attached to a carbon atom of any aliphatic or aromatic moiety.

Research Excerpts

ExcerptRelevanceReference
"Rats with type 2 diabetes were exposed to GYY4137, a slow release donor of hydrogen sulfide with or without administration of the Sirtuin3 short hairpin ribonucleic acid plasmid, and then subjected to a surgical model of ischemia-reperfusion injury of the lung (n = 8)."7.91Hydrogen sulfide attenuates lung ischemia-reperfusion injury through SIRT3-dependent regulation of mitochondrial function in type 2 diabetic rats. ( Cui, X; Ding, W; Jiang, T; Liu, T; Liu, Y; Lv, X; Meng, Q; Yue, Z, 2019)
"There was a significant correlation between body weight and leptin, and leptin in turn was significantly correlated with 10-kDa interferon-γ-induced protein (IP-10) levels and insulin resistance in type 2 diabetic patients."7.78The effect of sleep apnea and insomnia on blood levels of leptin, insulin resistance, IP-10, and hydrogen sulfide in type 2 diabetic patients. ( Bass, PF; Hoeldtke, R; Jain, SK; Kahlon, G; Levine, SN; Lieblong, B; Morehead, L; Stapleton, T, 2012)
"Hydrogen sulfide (H(2)S) is a vasodilatory gasotransmitter mediator in the cardiovascular system, proposed as an endothelium-derived relaxing factor."6.47Hydrogen sulfide and the metabolic syndrome. ( Chang, T; Desai, KM; Untereiner, A; Wu, L, 2011)
"Hydrogen sulfide (H(2)S) is an important signaling molecule."5.39In African American type 2 diabetic patients, is vitamin D deficiency associated with lower blood levels of hydrogen sulfide and cyclic adenosine monophosphate, and elevated oxidative stress? ( Bass, PF; Hoeldtke, R; Jain, SK; Kahlon, G; Levine, SN; Lieblong, BJ; Manna, P; Micinski, D; Morehead, L, 2013)
"Rats with type 2 diabetes were exposed to GYY4137, a slow release donor of hydrogen sulfide with or without administration of the Sirtuin3 short hairpin ribonucleic acid plasmid, and then subjected to a surgical model of ischemia-reperfusion injury of the lung (n = 8)."3.91Hydrogen sulfide attenuates lung ischemia-reperfusion injury through SIRT3-dependent regulation of mitochondrial function in type 2 diabetic rats. ( Cui, X; Ding, W; Jiang, T; Liu, T; Liu, Y; Lv, X; Meng, Q; Yue, Z, 2019)
"There was a significant correlation between body weight and leptin, and leptin in turn was significantly correlated with 10-kDa interferon-γ-induced protein (IP-10) levels and insulin resistance in type 2 diabetic patients."3.78The effect of sleep apnea and insomnia on blood levels of leptin, insulin resistance, IP-10, and hydrogen sulfide in type 2 diabetic patients. ( Bass, PF; Hoeldtke, R; Jain, SK; Kahlon, G; Levine, SN; Lieblong, B; Morehead, L; Stapleton, T, 2012)
"Mycophenolic acid was detected in all cats."2.61 ( Abrams, G; Adolfsson, E; Agarwal, PK; Akkan, AG; Al Alhareth, NS; Alves, VGL; Armentano, R; Bahroos, E; Baig, M; Baldridge, KK; Barman, S; Bartolucci, C; Basit, A; Bertoli, SV; Bian, L; Bigatti, G; Bobenko, AI; Boix, PP; Bokulic, T; Bolink, HJ; Borowiec, J; Bulski, W; Burciaga, J; Butt, NS; Cai, AL; Campos, AM; Cao, G; Cao, Y; Čapo, I; Caruso, ML; Chao, CT; Cheatum, CM; Chelminski, K; Chen, AJW; Chen, C; Chen, CH; Chen, D; Chen, G; Chen, H; Chen, LH; Chen, R; Chen, RX; Chen, X; Cherdtrakulkiat, R; Chirvony, VS; Cho, JG; Chu, K; Ciurlino, D; Coletta, S; Contaldo, G; Crispi, F; Cui, JF; D'Esposito, M; de Biase, S; Demir, B; Deng, W; Deng, Z; Di Pinto, F; Domenech-Ximenos, B; Dong, G; Drácz, L; Du, XJ; Duan, LJ; Duan, Y; Ekendahl, D; Fan, W; Fang, L; Feng, C; Followill, DS; Foreman, SC; Fortunato, G; Frew, R; Fu, M; Gaál, V; Ganzevoort, W; Gao, DM; Gao, X; Gao, ZW; Garcia-Alvarez, A; Garza, MS; Gauthier, L; Gazzaz, ZJ; Ge, RS; Geng, Y; Genovesi, S; Geoffroy, V; Georg, D; Gigli, GL; Gong, J; Gong, Q; Groeneveld, J; Guerra, V; Guo, Q; Guo, X; Güttinger, R; Guyo, U; Haldar, J; Han, DS; Han, S; Hao, W; Hayman, A; He, D; Heidari, A; Heller, S; Ho, CT; Ho, SL; Hong, SN; Hou, YJ; Hu, D; Hu, X; Hu, ZY; Huang, JW; Huang, KC; Huang, Q; Huang, T; Hwang, JK; Izewska, J; Jablonski, CL; Jameel, T; Jeong, HK; Ji, J; Jia, Z; Jiang, W; Jiang, Y; Kalumpha, M; Kang, JH; Kazantsev, P; Kazemier, BM; Kebede, B; Khan, SA; Kiss, J; Kohen, A; Kolbenheyer, E; Konai, MM; Koniarova, I; Kornblith, E; Krawetz, RJ; Kreouzis, T; Kry, SF; Laepple, T; Lalošević, D; Lan, Y; Lawung, R; Lechner, W; Lee, KH; Lee, YH; Leonard, C; Li, C; Li, CF; Li, CM; Li, F; Li, J; Li, L; Li, S; Li, X; Li, Y; Li, YB; Li, Z; Liang, C; Lin, J; Lin, XH; Ling, M; Link, TM; Liu, HH; Liu, J; Liu, M; Liu, W; Liu, YP; Lou, H; Lu, G; Lu, M; Lun, SM; Ma, Z; Mackensen, A; Majumdar, S; Martineau, C; Martínez-Pastor, JP; McQuaid, JR; Mehrabian, H; Meng, Y; Miao, T; Miljković, D; Mo, J; Mohamed, HSH; Mohtadi, M; Mol, BWJ; Moosavi, L; Mosdósi, B; Nabu, S; Nava, E; Ni, L; Novakovic-Agopian, T; Nyamunda, BC; Nyul, Z; Önal, B; Özen, D; Özyazgan, S; Pajkrt, E; Palazon, F; Park, HW; Patai, Á; Patai, ÁV; Patzke, GR; Payette, G; Pedoia, V; Peelen, MJCS; Pellitteri, G; Peng, J; Perea, RJ; Pérez-Del-Rey, D; Popović, DJ; Popović, JK; Popović, KJ; Posecion, L; Povall, J; Prachayasittikul, S; Prachayasittikul, V; Prat-González, S; Qi, B; Qu, B; Rakshit, S; Ravelli, ACJ; Ren, ZG; Rivera, SM; Salo, P; Samaddar, S; Samper, JLA; Samy El Gendy, NM; Schmitt, N; Sekerbayev, KS; Sepúlveda-Martínez, Á; Sessolo, M; Severi, S; Sha, Y; Shen, FF; Shen, X; Shen, Y; Singh, P; Sinthupoom, N; Siri, S; Sitges, M; Slovak, JE; Solymosi, N; Song, H; Song, J; Song, M; Spingler, B; Stewart, I; Su, BL; Su, JF; Suming, L; Sun, JX; Tantimavanich, S; Tashkandi, JM; Taurbayev, TI; Tedgren, AC; Tenhunen, M; Thwaites, DI; Tibrewala, R; Tomsejm, M; Triana, CA; Vakira, FM; Valdez, M; Valente, M; Valentini, AM; Van de Winckel, A; van der Lee, R; Varga, F; Varga, M; Villarino, NF; Villemur, R; Vinatha, SP; Vincenti, A; Voskamp, BJ; Wang, B; Wang, C; Wang, H; Wang, HT; Wang, J; Wang, M; Wang, N; Wang, NC; Wang, Q; Wang, S; Wang, X; Wang, Y; Wang, Z; Wen, N; Wesolowska, P; Willis, M; Wu, C; Wu, D; Wu, L; Wu, X; Wu, Z; Xia, JM; Xia, X; Xia, Y; Xiao, J; Xiao, Y; Xie, CL; Xie, LM; Xie, S; Xing, Z; Xu, C; Xu, J; Yan, D; Yan, K; Yang, S; Yang, X; Yang, XW; Ye, M; Yin, Z; Yoon, N; Yoon, Y; Yu, H; Yu, K; Yu, ZY; Zhang, B; Zhang, GY; Zhang, H; Zhang, J; Zhang, M; Zhang, Q; Zhang, S; Zhang, W; Zhang, X; Zhang, Y; Zhang, YW; Zhang, Z; Zhao, D; Zhao, F; Zhao, P; Zhao, W; Zhao, Z; Zheng, C; Zhi, D; Zhou, C; Zhou, FY; Zhu, D; Zhu, J; Zhu, Q; Zinyama, NP; Zou, M; Zou, Z, 2019)
"Obesity is associated with elevated plasma cysteine, whereas diabetes is associated with reduced cysteine levels."2.53Cysteine and hydrogen sulphide in the regulation of metabolism: insights from genetics and pharmacology. ( Carter, RN; Morton, NM, 2016)
"NO generation in Type 2 diabetes with nephropathy is inversely associated with the dimethyl-arginine concentrations, which are therefore important modulators of NO synthesis independently from the classic stimulatory pathways (such as the insulin effect)."2.52Nitric oxide in the normal kidney and in patients with diabetic nephropathy. ( Tessari, P, 2015)
"Hydrogen sulfide (H(2)S) is a vasodilatory gasotransmitter mediator in the cardiovascular system, proposed as an endothelium-derived relaxing factor."2.47Hydrogen sulfide and the metabolic syndrome. ( Chang, T; Desai, KM; Untereiner, A; Wu, L, 2011)
" Chronic administration of NaSH in particular at high doses impaired carbohydrate metabolism in type 2 diabetic rats."1.51Effects of Hydrogen Sulfide on Carbohydrate Metabolism in Obese Type 2 Diabetic Rats. ( Ghasemi, A; Gheibi, S; Jeddi, S; Kashfi, K, 2019)
"Hydrogen sulfide (H2S) has been reported to have proangiogenic effects."1.40Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes. ( Chen, AF; Chen, DD; Jia, W; Jia, WP; Liu, F; Sun, X; Xie, HH; Yuan, H, 2014)
""Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes."1.39Testing the rebound peer review concept. ( Olson, KR, 2013)
"Hydrogen sulfide (H(2)S) is an important signaling molecule."1.39In African American type 2 diabetic patients, is vitamin D deficiency associated with lower blood levels of hydrogen sulfide and cyclic adenosine monophosphate, and elevated oxidative stress? ( Bass, PF; Hoeldtke, R; Jain, SK; Kahlon, G; Levine, SN; Lieblong, BJ; Manna, P; Micinski, D; Morehead, L, 2013)
"Hydrogen sulfide is a newly identified modulator of protein synthesis in the kidney, and reduction in its generation may contribute to kidney injury in diabetes."1.38Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells. ( Abboud, HE; Cavaglieri, RC; Choudhury, GG; Feliers, D; Kasinath, BS; Lee, HJ; Mariappan, MM; Sataranatarajan, K, 2012)

Research

Studies (30)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's22 (73.33)24.3611
2020's8 (26.67)2.80

Authors

AuthorsStudies
Bahadoran, Z2
Jeddi, S4
Mirmiran, P2
Kashfi, K5
Azizi, F1
Ghasemi, A5
Dugbartey, GJ1
Wonje, QL1
Alornyo, KK1
Adams, I1
Diaba, DE1
Lendoiro-Cino, N1
Rodríguez-Coello, A1
Saborido, A1
F-Burguera, E1
Fernández-Rodríguez, JA1
Meijide-Faílde, R1
Blanco, FJ1
Vaamonde-García, C1
Citi, V1
Barresi, E1
Piragine, E2
Spezzini, J1
Testai, L1
Da Settimo, F1
Martelli, A1
Taliani, S1
Calderone, V2
Bobenko, AI1
Heller, S1
Schmitt, N1
Cherdtrakulkiat, R1
Lawung, R1
Nabu, S1
Tantimavanich, S1
Sinthupoom, N1
Prachayasittikul, S1
Prachayasittikul, V1
Zhang, B1
Wu, C1
Zhang, Z2
Yan, K1
Li, C2
Li, Y5
Li, L3
Zheng, C1
Xiao, Y1
He, D1
Zhao, F1
Su, JF1
Lun, SM1
Hou, YJ1
Duan, LJ1
Wang, NC1
Shen, FF1
Zhang, YW1
Gao, ZW1
Li, J5
Du, XJ1
Zhou, FY1
Yin, Z1
Zhu, J2
Yan, D1
Lou, H1
Yu, H1
Feng, C1
Wang, Z2
Wang, Y5
Hu, X1
Li, Z2
Shen, Y1
Hu, D1
Chen, H1
Wu, X1
Duan, Y1
Zhi, D1
Zou, M2
Zhao, Z1
Zhang, X2
Yang, X2
Zhang, J2
Wang, H2
Popović, KJ1
Popović, DJ1
Miljković, D1
Lalošević, D1
Čapo, I1
Popović, JK1
Liu, M1
Song, H2
Xing, Z1
Lu, G1
Chen, D1
Valentini, AM1
Di Pinto, F1
Coletta, S1
Guerra, V1
Armentano, R1
Caruso, ML1
Gong, J1
Wang, N1
Bian, L1
Wang, M2
Ye, M1
Wen, N1
Fu, M1
Fan, W1
Meng, Y1
Dong, G1
Lin, XH1
Liu, HH1
Gao, DM1
Cui, JF1
Ren, ZG1
Chen, RX1
Önal, B1
Özen, D1
Demir, B1
Akkan, AG1
Özyazgan, S1
Payette, G1
Geoffroy, V1
Martineau, C1
Villemur, R1
Jameel, T1
Baig, M1
Gazzaz, ZJ1
Tashkandi, JM1
Al Alhareth, NS1
Khan, SA1
Butt, NS1
Wang, J5
Geng, Y1
Zhang, Y4
Wang, X4
Liu, J4
Basit, A1
Miao, T1
Liu, W1
Jiang, W1
Yu, ZY1
Wu, L3
Qu, B1
Sun, JX1
Cai, AL1
Xie, LM1
Groeneveld, J1
Ho, SL1
Mackensen, A1
Mohtadi, M1
Laepple, T1
Genovesi, S1
Nava, E1
Bartolucci, C1
Severi, S1
Vincenti, A1
Contaldo, G1
Bigatti, G1
Ciurlino, D1
Bertoli, SV1
Slovak, JE1
Hwang, JK1
Rivera, SM1
Villarino, NF1
Li, S2
Cao, G1
Ling, M1
Ji, J1
Zhao, D1
Sha, Y1
Gao, X2
Liang, C2
Guo, Q1
Zhou, C1
Ma, Z1
Xu, J1
Wang, C1
Zhao, W1
Xia, X1
Jiang, Y1
Peng, J1
Jia, Z1
Li, F1
Chen, X3
Mo, J1
Zhang, S2
Li, X2
Huang, T1
Zhu, Q1
Wang, S2
Ge, RS1
Fortunato, G1
Lin, J2
Agarwal, PK1
Kohen, A1
Singh, P1
Cheatum, CM1
Zhu, D1
Hayman, A1
Kebede, B1
Stewart, I1
Chen, G1
Frew, R1
Guo, X2
Gong, Q1
Borowiec, J1
Han, S1
Zhang, M2
Willis, M1
Kreouzis, T1
Yu, K1
Chirvony, VS1
Sekerbayev, KS1
Pérez-Del-Rey, D1
Martínez-Pastor, JP1
Palazon, F1
Boix, PP1
Taurbayev, TI1
Sessolo, M1
Bolink, HJ1
Lu, M1
Lan, Y1
Xiao, J1
Song, M1
Chen, C1
Huang, Q1
Cao, Y1
Ho, CT1
Qi, B1
Wang, Q1
Zhang, W1
Fang, L1
Xie, CL1
Chen, R1
Yang, S1
Xia, JM1
Zhang, GY1
Chen, CH1
Yang, XW1
Domenech-Ximenos, B1
Garza, MS1
Prat-González, S1
Sepúlveda-Martínez, Á1
Crispi, F1
Perea, RJ1
Garcia-Alvarez, A1
Sitges, M1
Kalumpha, M1
Guyo, U1
Zinyama, NP1
Vakira, FM1
Nyamunda, BC1
Varga, M1
Drácz, L1
Kolbenheyer, E1
Varga, F1
Patai, ÁV1
Solymosi, N1
Patai, Á1
Kiss, J1
Gaál, V1
Nyul, Z1
Mosdósi, B1
Valdez, M1
Moosavi, L1
Heidari, A1
Novakovic-Agopian, T1
Kornblith, E1
Abrams, G1
McQuaid, JR1
Posecion, L1
Burciaga, J1
D'Esposito, M1
Chen, AJW1
Samy El Gendy, NM1
Wesolowska, P1
Georg, D1
Lechner, W1
Kazantsev, P1
Bokulic, T1
Tedgren, AC1
Adolfsson, E1
Campos, AM1
Alves, VGL1
Suming, L1
Hao, W1
Ekendahl, D1
Koniarova, I1
Bulski, W1
Chelminski, K1
Samper, JLA1
Vinatha, SP1
Rakshit, S1
Siri, S1
Tomsejm, M1
Tenhunen, M1
Povall, J1
Kry, SF1
Followill, DS1
Thwaites, DI1
Izewska, J1
Kang, JH1
Yoon, Y1
Song, J1
Van de Winckel, A1
Gauthier, L1
Chao, CT1
Lee, YH1
Li, CM1
Han, DS1
Huang, JW1
Huang, KC1
Ni, L1
Güttinger, R1
Triana, CA1
Spingler, B1
Baldridge, KK1
Patzke, GR1
Shen, X1
Wang, B1
Xie, S1
Deng, W1
Wu, D1
Zhang, Q4
Voskamp, BJ1
Peelen, MJCS1
Ravelli, ACJ1
van der Lee, R1
Mol, BWJ1
Pajkrt, E1
Ganzevoort, W1
Kazemier, BM1
Tibrewala, R1
Bahroos, E1
Mehrabian, H1
Foreman, SC1
Link, TM1
Pedoia, V1
Majumdar, S1
Jablonski, CL1
Leonard, C1
Salo, P1
Krawetz, RJ1
Yoon, N1
Hong, SN1
Cho, JG1
Jeong, HK1
Lee, KH1
Park, HW1
Barman, S1
Konai, MM1
Samaddar, S1
Haldar, J1
Mohamed, HSH1
Li, CF1
Hu, ZY1
Deng, Z1
Chen, LH1
Su, BL1
Chu, K1
Liu, YP1
Li, YB1
Zhang, H2
Xu, C2
Zou, Z1
Wu, Z1
Xia, Y1
Zhao, P1
Wang, HT1
de Biase, S1
Pellitteri, G1
Gigli, GL1
Valente, M1
Gheibi, S3
Carlström, M2
Ortiz-Barrios, M1
Gul, M1
López-Meza, P1
Yucesan, M1
Navarro-Jiménez, E1
Khuntia, HK1
Chanakya, HN1
D'Arienzo, M1
Coniglio, A1
Boag, AM1
Short, A1
Kennedy, LJ1
Syme, H1
Graham, PA1
Catchpole, B1
Tofighi, B1
El Shahawy, O1
Segoshi, A1
Moreno, KP1
Badiei, B1
Sarker, A1
Krawczyk, N1
Zhou, Y1
Li, R1
Guo, B1
Zhang, L1
Xia, S1
Liu, Y2
Nielsen, CU1
Pedersen, M1
Müller, S1
Kæstel, T1
Bjerg, M1
Ulaganathan, N1
Nielsen, S1
Carlsen, KL1
Nøhr, MK1
Holm, R1
Dottino, JA1
Loose, DS1
Fellman, B1
Melendez, BD1
Borthwick, MS1
McKenzie, LJ1
Yuan, Y1
Yang, RK1
Broaddus, RR1
Lu, KH1
Soliman, PT1
Yates, MS1
Zhu, Z1
Hasegawa, K1
Ma, B1
Fujiogi, M1
Camargo, CA1
Liang, L1
Sangroula, S1
Baez Vasquez, AY1
Raut, P1
Obeng, B1
Shim, JK1
Bagley, GD1
West, BE1
Burnell, JE1
Kinney, MS1
Potts, CM1
Weller, SR1
Kelley, JB1
Hess, ST1
Gosse, JA1
Breves, JP1
Springer-Miller, RH1
Chenoweth, DA1
Paskavitz, AL1
Chang, AYH1
Regish, AM1
Einarsdottir, IE1
Björnsson, BT1
McCormick, SD1
Villmones, HC1
Halland, A1
Stenstad, T1
Ulvestad, E1
Weedon-Fekjær, H1
Kommedal, Ø1
Nasri, A1
Jaleh, B1
Khazalpour, S1
Nasrollahzadeh, M1
Shokouhimehr, M1
Ferrario, M1
Fenoglio, D1
Chantada, A1
Guerrero, S1
Odetayo, AA1
Reible, DD1
Acevedo-Mackey, D1
Price, C1
Thai, L1
Lin, Y1
Wang, D1
Zhang, C2
Chen, Y3
Nie, E1
Huang, L1
Lu, Y1
Akhtar, K1
Ye, Q1
Yang, Y2
Chen, W1
Dai, Y2
An, Y1
Chai, C1
Sang, J1
Jiang, L1
Lu, F1
Liu, F2
Pu, Y1
Zhou, B1
Xiang, H1
Wu, W1
Yin, H1
Yue, W1
Yin, Y1
Li, H1
Xu, H1
Shaw, L1
Shaw, D1
Hardisty, M1
Britz-McKibbin, P1
Verma, DK1
Li, W1
Wufuer, R1
Duo, J1
Luo, Y1
Zhang, D1
Pan, X1
Jones, DL1
Baluja, MQ1
Graham, DW1
Corbishley, A1
McDonald, JE1
Malham, SK1
Hillary, LS1
Connor, TR1
Gaze, WH1
Moura, IB1
Wilcox, MH1
Farkas, K1
Liu, X1
Shao, X1
Ji, X1
Tian, G1
Sun, R1
Wang, L2
Zhu, Y1
Tuyiringire, D1
Li, K1
Han, W1
Yan, L1
El Hayany, B1
El Fels, L1
Quénéa, K1
Dignac, MF1
Rumpel, C1
Gupta, VK1
Hafidi, M1
de Oliveira, BR1
Bragança, MLBM1
Batalha, MA1
Coelho, CCNDS1
Bettiol, H1
Barbieri, MA1
Saraiva, MDCP1
Kac, G1
da Silva, AAM1
Rather, BA1
Mir, IR1
Sehar, Z1
Anjum, NA1
Masood, A1
Khan, NA1
Songsamoe, S1
Koomhin, P1
Matan, N1
Flögel, F1
Gärtner, S1
Rahimi Khonakdari, M1
Rezadoost, H1
Heydari, R1
Mirjalili, MH1
Kebaili, I1
Boukhris, I1
Sayyed, MI1
Tonguc, B1
Al-Buriahi, MS1
Ganson, KT1
Nagata, JM1
Cole, MA2
Ozgen, C1
Strobl, E1
Coker, ES1
Cavalli, L1
Fabrizi, E1
Guastella, G1
Lippo, E1
Parisi, ML1
Pontarollo, N1
Rizzati, M1
Varacca, A1
Vergalli, S1
Elliott, RJR1
Liu, B1
Bajelan, S1
Bahreini, MS1
Asgari, Q1
Mikaeili, F1
Lakmal, MAC1
Ekanayake, EMDNK1
Kelum, SHP1
Gamage, BD1
Jayasundara, JASB1
Gautam, S1
Gautam, A1
Chhetri, S1
Bhattarai, U1
Acharjee, N1
Patel, AK1
Lodha, D1
Shekhawat, NS1
Zeng, W1
Dong, A1
Cheng, ZL1
Campo, M1
Amandi, A1
Biset, JC1
Roviello, V1
Roviello, GN1
Zhao, L1
Zhang, F1
Ding, X1
Wu, G1
Lam, YY1
Fu, H1
Xue, X1
Lu, C1
Ma, J1
Yu, L1
Ren, Z1
Xu, Y1
Xu, S1
Shen, H1
Zhu, X1
Shi, Y1
Shen, Q1
Dong, W1
Liu, R1
Ling, Y1
Zeng, Y1
Wu, Y1
Zeng, B1
Wei, H1
Peng, Y1
Jiang, T1
Meng, Q1
Lv, X1
Yue, Z1
Ding, W1
Liu, T1
Cui, X1
Melino, S1
Leo, S1
Toska Papajani, V1
Olson, KR1
Peake, BF1
Nicholson, CK1
Lambert, JP1
Hood, RL1
Amin, H1
Amin, S1
Calvert, JW1
Okamoto, M1
Yamaoka, M1
Takei, M1
Ando, T1
Taniguchi, S1
Ishii, I1
Tohya, K1
Ishizaki, T1
Niki, I1
Kimura, T1
Chen, DD1
Sun, X1
Xie, HH1
Yuan, H1
Jia, W1
Jia, WP1
Chen, AF1
Tessari, P1
Carter, RN1
Morton, NM1
Petrova, IV1
Trubacheva, OA1
Mangataeva, OS1
Suslova, TE1
Kovalev, IV1
Gusakova, SV1
Kaneko, YK1
Jain, SK3
Bull, R1
Rains, JL1
Bass, PF3
Levine, SN3
Reddy, S1
McVie, R1
Bocchini, JA1
Whiteman, M1
Gooding, KM1
Whatmore, JL1
Ball, CI1
Mawson, D1
Skinner, K1
Tooke, JE1
Shore, AC1
Desai, KM1
Chang, T1
Untereiner, A1
Lee, HJ1
Mariappan, MM1
Feliers, D1
Cavaglieri, RC1
Sataranatarajan, K1
Abboud, HE1
Choudhury, GG1
Kasinath, BS1
Kahlon, G2
Morehead, L2
Lieblong, B1
Stapleton, T1
Hoeldtke, R2
Manna, P1
Micinski, D1
Lieblong, BJ1
Huang, CY1
Yao, WF1
Wu, WG1
Lu, YL1
Wan, H1
Wang, W1
Xue, R1
Hao, DD1
Sun, JP1
Li, WW1
Zhao, MM1
Li, XH1
Zhu, JH1
Ding, YJ1
Zhu, YC1

Clinical Trials (2)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Effect of Dietary Interventions in Overweight and Obese Patients[NCT04140851]52 participants (Anticipated)Interventional2019-07-01Recruiting
Effect of Innovative Natural Dietary Formulation on Primary Hypertension and the Underlying Mechanism of Gut Microbiome Restoration: Pilot Study[NCT04403347]Early Phase 190 participants (Anticipated)Interventional2021-07-08Recruiting
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Reviews

8 reviews available for hydrogen sulfide and Diabetes Mellitus, Adult-Onset

ArticleYear
    Proceedings. Mathematical, physical, and engineering sciences, 2019, Volume: 475, Issue:2227

    Topics: Acetylcholine; Acinetobacter baumannii; Actinobacteria; Action Potentials; Adalimumab; Adaptation, P

2019
    International journal of disaster risk reduction : IJDRR, 2020, Volume: 49

    Topics: Acyclic Monoterpenes; Adipose Tissue; Adolescent; Adult; Aged; Aged, 80 and over; Air Pollutants; Ai

2020
Pharmacological modulation of the hydrogen sulfide (H
    Phytotherapy research : PTR, 2021, Volume: 35, Issue:4

    Topics: Diabetes Mellitus, Type 2; Humans; Hydrogen Sulfide; Hyperglycemia

2021
Natural Hydrogen Sulfide Donors from
    Nutrients, 2019, Jul-12, Volume: 11, Issue:7

    Topics: Allium; Diabetes Mellitus, Type 2; Dietary Supplements; Humans; Hydrogen Sulfide; Phytochemicals

2019
Nitric oxide in the normal kidney and in patients with diabetic nephropathy.
    Journal of nephrology, 2015, Volume: 28, Issue:3

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Antioxidants; Diabetes Mellitus, Type 2; Diabetic

2015
Cysteine and hydrogen sulphide in the regulation of metabolism: insights from genetics and pharmacology.
    The Journal of pathology, 2016, Volume: 238, Issue:2

    Topics: Adipose Tissue; Animals; Blood Glucose; Cysteine; Diabetes Mellitus, Type 2; Disease Models, Animal;

2016
Development and Analysis of Novel Therapeutic Targets to Improve Pancreatic β-Cell Function in Type 2 Diabetes.
    Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, 2016, Volume: 136, Issue:12

    Topics: Antioxidants; Apoptosis; Arginine; Catalysis; Cystathionine gamma-Lyase; Diabetes Mellitus, Type 2;

2016
Hydrogen sulfide and the metabolic syndrome.
    Expert review of clinical pharmacology, 2011, Volume: 4, Issue:1

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Type 2; Humans; Hydrogen Sulfide; Hypertension; Metabolic

2011

Trials

1 trial available for hydrogen sulfide and Diabetes Mellitus, Adult-Onset

ArticleYear
Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.
    Science (New York, N.Y.), 2018, 03-09, Volume: 359, Issue:6380

    Topics: Adult; Aged; Bacteria; China; Diabetes Mellitus, Type 2; Diet; Dietary Fiber; Fatty Acids, Volatile;

2018
Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.
    Science (New York, N.Y.), 2018, 03-09, Volume: 359, Issue:6380

    Topics: Adult; Aged; Bacteria; China; Diabetes Mellitus, Type 2; Diet; Dietary Fiber; Fatty Acids, Volatile;

2018
Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.
    Science (New York, N.Y.), 2018, 03-09, Volume: 359, Issue:6380

    Topics: Adult; Aged; Bacteria; China; Diabetes Mellitus, Type 2; Diet; Dietary Fiber; Fatty Acids, Volatile;

2018
Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.
    Science (New York, N.Y.), 2018, 03-09, Volume: 359, Issue:6380

    Topics: Adult; Aged; Bacteria; China; Diabetes Mellitus, Type 2; Diet; Dietary Fiber; Fatty Acids, Volatile;

2018

Other Studies

21 other studies available for hydrogen sulfide and Diabetes Mellitus, Adult-Onset

ArticleYear
Association between serum hydrogen sulfide concentrations and dysglycemia: a population-based study.
    BMC endocrine disorders, 2022, Mar-28, Volume: 22, Issue:1

    Topics: Adult; Blood Glucose; Diabetes Mellitus, Type 2; Female; Glucose Tolerance Test; Humans; Hydrogen Su

2022
Carbon monoxide and β-cell function: Implications for type 2 diabetes mellitus.
    Biochemical pharmacology, 2022, Volume: 201

    Topics: Carbon Monoxide; Diabetes Mellitus, Type 2; Gasotransmitters; Humans; Hydrogen Sulfide; Nitric Oxide

2022
Alpha-lipoic acid treatment improves adverse cardiac remodelling in the diabetic heart - The role of cardiac hydrogen sulfide-synthesizing enzymes.
    Biochemical pharmacology, 2022, Volume: 203

    Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Hydr

2022
Study of hydrogen sulfide biosynthesis in synovial tissue from diabetes-associated osteoarthritis and its influence on macrophage phenotype and abundance.
    Journal of physiology and biochemistry, 2023, Volume: 79, Issue:3

    Topics: Diabetes Mellitus, Type 2; Humans; Hydrogen Sulfide; Macrophages; Osteoarthritis; Phenotype

2023
Anti-Proliferative Properties of the Novel Hybrid Drug Met-ITC, Composed of the Native Drug Metformin with the Addition of an Isothiocyanate H
    International journal of molecular sciences, 2023, Nov-09, Volume: 24, Issue:22

    Topics: Cell Line; Diabetes Mellitus, Type 2; Humans; Hydrogen Sulfide; Isothiocyanates; Metformin; Neoplasm

2023
Hydrogen sulfide potentiates the favorable metabolic effects of inorganic nitrite in type 2 diabetic rats.
    Nitric oxide : biology and chemistry, 2019, 11-01, Volume: 92

    Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models,

2019
Protective effect of intermediate doses of hydrogen sulfide against myocardial ischemia-reperfusion injury in obese type 2 diabetic rats.
    Life sciences, 2020, Sep-01, Volume: 256

    Topics: Animals; Cardiotonic Agents; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-

2020
Effects of Hydrogen Sulfide on Carbohydrate Metabolism in Obese Type 2 Diabetic Rats.
    Molecules (Basel, Switzerland), 2019, Jan-06, Volume: 24, Issue:1

    Topics: Animals; Blood Glucose; Blood Pressure; Carbohydrate Metabolism; Diabetes Mellitus, Experimental; Di

2019
Hydrogen sulfide attenuates lung ischemia-reperfusion injury through SIRT3-dependent regulation of mitochondrial function in type 2 diabetic rats.
    Surgery, 2019, Volume: 165, Issue:5

    Topics: Animals; Apoptosis; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Drug

2019
Testing the rebound peer review concept.
    Antioxidants & redox signaling, 2013, Jul-01, Volume: 19, Issue:1

    Topics: Animals; Diabetes Mellitus, Type 2; Glucose; Hydrogen Sulfide; Kidney; Male; Receptor, Insulin

2013
Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner.
    American journal of physiology. Heart and circulatory physiology, 2013, Volume: 304, Issue:9

    Topics: Animals; Basic-Leucine Zipper Transcription Factors; Diabetes Mellitus, Type 2; Extracellular Signal

2013
Endogenous hydrogen sulfide protects pancreatic beta-cells from a high-fat diet-induced glucotoxicity and prevents the development of type 2 diabetes.
    Biochemical and biophysical research communications, 2013, Dec-13, Volume: 442, Issue:3-4

    Topics: Animals; Carrier Proteins; Cystathionine gamma-Lyase; Cytoprotection; Diabetes Mellitus, Type 2; Die

2013
Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes.
    Diabetes, 2014, Volume: 63, Issue:5

    Topics: Angiopoietin-1; Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Endothelial Cells; Hydro

2014
[THE INFLUENCE OF HYDROGEN SULFIDE ON COLLAGEN-INDUCED AGGREGATION OF HUMAN PLATELETS].
    Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova, 2015, Volume: 101, Issue:10

    Topics: Adult; Blood Platelets; Calcium; Case-Control Studies; Colforsin; Collagen; Cyclic AMP; Diabetes Mel

2015
Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation?
    Antioxidants & redox signaling, 2010, Jun-01, Volume: 12, Issue:11

    Topics: Animals; Blood Vessels; Diabetes Mellitus, Type 2; Glucose; Humans; Hydrogen Sulfide; Inflammation;

2010
Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide.
    Diabetologia, 2010, Volume: 53, Issue:8

    Topics: Adiposity; Adult; Aged; Blood Pressure; Diabetes Mellitus, Type 2; Humans; Hydrogen Sulfide; Insulin

2010
Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells.
    The Journal of biological chemistry, 2012, Feb-10, Volume: 287, Issue:7

    Topics: Adaptor Proteins, Signal Transducing; Air Pollutants; AMP-Activated Protein Kinase Kinases; AMP-Acti

2012
The effect of sleep apnea and insomnia on blood levels of leptin, insulin resistance, IP-10, and hydrogen sulfide in type 2 diabetic patients.
    Metabolic syndrome and related disorders, 2012, Volume: 10, Issue:5

    Topics: Adult; Body Weight; Case-Control Studies; Chemokine CXCL10; Diabetes Mellitus, Type 2; Female; Human

2012
In African American type 2 diabetic patients, is vitamin D deficiency associated with lower blood levels of hydrogen sulfide and cyclic adenosine monophosphate, and elevated oxidative stress?
    Antioxidants & redox signaling, 2013, Apr-01, Volume: 18, Issue:10

    Topics: Adult; Black or African American; Cyclic AMP; Diabetes Mellitus, Type 2; Female; Humans; Hydrogen Su

2013
Endogenous CSE/H2 S system mediates TNF-α-induced insulin resistance in 3T3-L1 adipocytes.
    Cell biochemistry and function, 2013, Volume: 31, Issue:6

    Topics: 3T3-L1 Cells; Adipocytes; Animals; Cystathionine gamma-Lyase; Diabetes Mellitus, Type 2; Glucose; Hu

2013
Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes.
    Antioxidants & redox signaling, 2013, Jul-01, Volume: 19, Issue:1

    Topics: 3T3-L1 Cells; Animals; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2;

2013