humulin-s and Alzheimer-Disease

humulin-s has been researched along with Alzheimer-Disease* in 5 studies

Reviews

4 review(s) available for humulin-s and Alzheimer-Disease

ArticleYear
Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium.
    International journal of molecular sciences, 2023, Feb-07, Volume: 24, Issue:4

    A decrease in the activity of the insulin signaling system of the brain, due to both central insulin resistance and insulin deficiency, leads to neurodegeneration and impaired regulation of appetite, metabolism, endocrine functions. This is due to the neuroprotective properties of brain insulin and its leading role in maintaining glucose homeostasis in the brain, as well as in the regulation of the brain signaling network responsible for the functioning of the nervous, endocrine, and other systems. One of the approaches to restore the activity of the insulin system of the brain is the use of intranasally administered insulin (INI). Currently, INI is being considered as a promising drug to treat Alzheimer's disease and mild cognitive impairment. The clinical application of INI is being developed for the treatment of other neurodegenerative diseases and improve cognitive abilities in stress, overwork, and depression. At the same time, much attention has recently been paid to the prospects of using INI for the treatment of cerebral ischemia, traumatic brain injuries, and postoperative delirium (after anesthesia), as well as diabetes mellitus and its complications, including dysfunctions in the gonadal and thyroid axes. This review is devoted to the prospects and current trends in the use of INI for the treatment of these diseases, which, although differing in etiology and pathogenesis, are characterized by impaired insulin signaling in the brain.

    Topics: Administration, Intranasal; Alzheimer Disease; Brain; Brain Injuries; Cerebral Infarction; Diabetes Mellitus; Emergence Delirium; Humans; Insulin; Insulin, Regular, Human

2023
Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: A Focus on Insulin Resistance.
    International journal of molecular sciences, 2023, Feb-22, Volume: 24, Issue:5

    Alzheimer's disease (AD) is the main type of dementia and is a disease with a profound socioeconomic burden due to the lack of effective treatment. In addition to genetics and environmental factors, AD is highly associated with metabolic syndrome, defined as the combination of hypertension, hyperlipidemia, obesity and type 2 diabetes mellitus (T2DM). Among these risk factors, the connection between AD and T2DM has been deeply studied. It has been suggested that the mechanism linking both conditions is insulin resistance. Insulin is an important hormone that regulates not only peripheral energy homeostasis but also brain functions, such as cognition. Insulin desensitization, therefore, could impact normal brain function increasing the risk of developing neurodegenerative disorders in later life. Paradoxically, it has been demonstrated that decreased neuronal insulin signalling can also have a protective role in aging and protein-aggregation-associated diseases, as is the case in AD. This controversy is fed by studies focused on neuronal insulin signalling. However, the role of insulin action on other brain cell types, such as astrocytes, is still unexplored. Therefore, it is worthwhile exploring the involvement of the astrocytic insulin receptor in cognition, as well as in the onset and/or development of AD.

    Topics: Alzheimer Disease; Brain; Diabetes Mellitus, Type 2; Humans; Insulin; Insulin Resistance; Insulin, Regular, Human; Metabolic Syndrome; Risk Factors

2023
The Role of Insulin Signaling in Hippocampal-Related Diseases: A Focus on Alzheimer's Disease.
    International journal of molecular sciences, 2022, Nov-20, Volume: 23, Issue:22

    Alzheimer's disease (AD) is a global concern and has become a major public health event affecting human health. Insulin is a metabolic hormone secreted mainly by the peripheral tissue pancreas. In recent years, more and more evidence has proved that insulin regulates various functions of the brain. The hippocampus, one of the earliest brain regions affected by AD, is widely distributed with insulin receptors. Studies have shown that type 2 diabetes mellitus, characterized by insulin resistance, is closely related to AD, which has drawn extensive attention to the relationship between hippocampal insulin signaling and AD. Therefore, we provide an overview of intranasal insulin administration on memory and its underlying mechanism. We also highlight the molecular link between hippocampal insulin resistance and AD and provide a theoretical basis for finding new therapeutic targets for AD in clinical practice.

    Topics: Alzheimer Disease; Diabetes Mellitus, Type 2; Hippocampus; Humans; Insulin; Insulin Resistance; Insulin, Regular, Human

2022
Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer's Disease.
    International journal of molecular sciences, 2022, Dec-13, Volume: 23, Issue:24

    Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.

    Topics: Alzheimer Disease; Brain; Diabetes Mellitus, Type 2; Humans; Insulin; Insulin, Regular, Human

2022

Trials

1 trial(s) available for humulin-s and Alzheimer-Disease

ArticleYear
Empagliflozin Induced Ketosis, Upregulated IGF-1/Insulin Receptors and the Canonical Insulin Signaling Pathway in Neurons, and Decreased the Excitatory Neurotransmitter Glutamate in the Brain of Non-Diabetics.
    Cells, 2022, 10-25, Volume: 11, Issue:21

    Sodium-glucose cotransporter-2 inhibitors (SGLT2is), such as empagliflozin, lower blood glucose in type 2 diabetes mellitus and improve cardiorenal outcomes regardless of diabetes presence. Whether SGLT2is exert any effects on the brain's metabolism has not been studied. We conducted a single-arm clinical trial to investigate the effects of once daily administration of oral empagliflozin (25 mg) for 14 days on systemic and brain metabolism in 21 non-diabetics aged 55 years old or older. Empagliflozin lowered circulating insulin and elevated β-hydroxybutyrate over 34-h periods, both following its first administration and after 14 days of daily administration, with minor alterations in glucose homeostasis. Levels of phosphorylated insulin-like growth factor-1 receptor (pIGF-1R), phosphorylated insulin receptor (pIR), phosphorylated-in-tyrosine insulin receptor substrate-1 (pY-IRS-1), and phosphorylated protein kinase B or AKT (pAKT) were increased in extracellular vesicles enriched for neuronal origin (NEVs) following the first empagliflozin administration, but not after 14 days. Our finding of IGF-1R upregulation in NEVs is promising because several post-mortem and epidemiological studies support the idea that upregulation of IGF signaling may protect against Alzheimer's disease (AD). Moreover, our finding showing activation of insulin signaling and, in particular, the canonical pathway (pIR, pY-IRS-1, pAKT) in NEVs is important because such changes have been repeatedly associated with neuronal survival. Using brain magnetic resonance spectroscopy (MRS), we detected decreased concentrations of the excitatory neurotransmitter glutamate and its precursor glutamine after empagliflozin administration. This finding is also encouraging since glutamatergic excitotoxicity has long been implicated in AD pathology. Overall, our findings may motivate the repurposing of SGLT2is for use in AD and other, related diseases that are characterized by downregulation of IGF-1/insulin signaling in neurons and excitotoxicity.

    Topics: Alzheimer Disease; Blood Glucose; Brain; Diabetes Mellitus, Type 2; Female; Glutamic Acid; Humans; Insulin; Insulin-Like Growth Factor I; Insulin, Regular, Human; Ketosis; Middle Aged; Neurons; Neurotransmitter Agents; Placenta Growth Factor; Receptor, Insulin; Signal Transduction; Sodium-Glucose Transporter 2 Inhibitors

2022