humulene has been researched along with Inflammation* in 70 studies
23 review(s) available for humulene and Inflammation
Article | Year |
---|---|
Immunomodulatory Actions of Cannabinoids: Clinical Correlates and Therapeutic Opportunities for Allergic Inflammation.
Endogenously produced cannabinoids as well as phytocannabinoids broadly exhibit anti-inflammatory actions. Recent emergence of cannabis for multiple medical issues combined with reports on potent immunomodulatory actions of distinct components has underscored the therapeutic potential of cannabis. Although synthetic cannabinoids that are based on structural similarities to the existing class of cannabinoids have been on the rise, their application in therapeutics have been limited owing to toxicity concerns. Herein, we review the current literature that details the immunomodulatory actions of cannabinoids. Further, we highlight the complexities of cannabinoid biology and examine the potential inflammatory risks associated with the use of cannabis including potential for toxic interactions between distinct constituents of cannabis. Topics: Anti-Inflammatory Agents; Cannabinoids; Cannabis; Humans; Inflammation | 2023 |
Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance.
Cannabidiol (CBD) is the main non-psychotropic cannabinoid derived from cannabis ( Topics: Animals; Cannabidiol; Cannabis; Clinical Relevance; COVID-19; Guinea Pigs; Humans; Immunity, Innate; Inflammation; Mice; Rats; SARS-CoV-2; United States | 2023 |
Cannabis and orofacial pain: a systematic review.
The naturally occurring cannabis plant has played an established role in pain management throughout recorded history. However, in recent years, both natural and synthetic cannabis-based products for medicinal use (CBPM) have gained increasing worldwide attention due to growing evidence supporting their use in alleviating chronic inflammatory and neuropathic pain associated with an array of conditions. In view of these products' growing popularity in both the medical and commercial fields, we carried out a systematic review to ascertain the effects of cannabis and its synthetically derived products on orofacial pain and inflammation. The application of topical dermal cannabidiol formulation has shown positive findings such as reducing pain and improving muscle function in patients suffering from myofascial pain. Conversely, two orally-administered synthetic cannabinoid receptor agonists (AZD1940 and GW842166) failed to demonstrate significant analgesic effects following surgical third molar removal. There is a paucity of literature pertaining to the effects of cannabis-based products in the orofacial region; however, there is a wealth of high-quality evidence supporting their use for treating chronic nociceptive and neuropathic pain conditions in other areas. Further research is warranted to explore and substantiate the therapeutic role of CBPMs in the context of orofacial pain and inflammation. As evidence supporting their use expands, healthcare professionals should pay close attention to outcomes and changes to legislation that may impact and potentially benefit their patients. Topics: Analgesics; Cannabinoid Receptor Agonists; Cannabis; Facial Pain; Humans; Inflammation; Neuralgia | 2022 |
Biological effects of cannabidiol on human cancer cells: Systematic review of the literature.
This systematic review examine the biological effects of CBD, a major component of therapeutic Cannabis, on human pathological and cancer cell populations of integumentary, gastro-intestinal, genital and breast, respiratory, nervous, haematopoietic and skeletal districts in terms of cell viability, proliferation, migration, apoptosis, inflammation, metastasis, and CBD receptor expression. The included studies were in English, on human cell lines and primary culture from non-healthy donors with CBD exposure as variable and no CBD exposure as control. Quality assessment was based on ToxRtool with a reliability score ranging from 15 to 18. Following the PRISMA statement 4 independent reviewers performed an electronic search using MEDLINE via PubMed, Scopus and Web of Science. From 3974 articles, 83 studies have been selected. Data showed conflicting results due to different concentration exposure, administrations and time points. CBD inhibited cell viability and proliferation in most cellular districts except the integumentary apparatus. Also a significant inhibition of migration was observed in all cell types, while an increase in apoptosis at both high and low doses (greater and less than 10 μM respectively). Considering inflammation, CBD caused an anti-inflammatory effect on nervous cells at low doses and on gastro-intestinal cells at high doses, while metastatic power was reduced even at low doses, but in a skeletal cell line there was an increased angiogenesis. CB1 receptor has been related to viability effects, CB2 to apoptosis and TRPV1 to inflammation and invasiveness. A detailed insight into these aspects would allow therapeutic use of this substance without possible side effects. Topics: Apoptosis; Cannabidiol; Cannabis; Humans; Inflammation; Neoplasms; Reproducibility of Results | 2022 |
Topics: Analgesics; Anti-Inflammatory Agents; Cannabidiol; Cannabinoid Receptor Agonists; Cannabinoids; Cannabis; Dronabinol; Humans; Inflammation; Obesity | 2022 |
Involvement of the ACE2/Ang-(1-7)/MasR Axis in Pulmonary Fibrosis: Implications for COVID-19.
Pulmonary fibrosis is a chronic, fibrotic lung disease affecting 3 million people worldwide. The ACE2/Ang-(1-7)/MasR axis is of interest in pulmonary fibrosis due to evidence of its anti-fibrotic action. Current scientific evidence supports that inhibition of ACE2 causes enhanced fibrosis. ACE2 is also the primary receptor that facilitates the entry of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. COVID-19 is associated with a myriad of symptoms ranging from asymptomatic to severe pneumonia and acute respiratory distress syndrome (ARDS) leading to respiratory failure, mechanical ventilation, and often death. One of the potential complications in people who recover from COVID-19 is pulmonary fibrosis. Cigarette smoking is a risk factor for fibrotic lung diseases, including the idiopathic form of this disease (idiopathic pulmonary fibrosis), which has a prevalence of 41% to 83%. Cigarette smoke increases the expression of pulmonary ACE2 and is thought to alter susceptibility to COVID-19. Cannabis is another popular combustible product that shares some similarities with cigarette smoke, however, cannabis contains cannabinoids that may reduce inflammation and/or ACE2 levels. The role of cannabis smoke in the pathogenesis of pulmonary fibrosis remains unknown. This review aimed to characterize the ACE2-Ang-(1-7)-MasR Axis in the context of pulmonary fibrosis with an emphasis on risk factors, including the SARS-CoV-2 virus and exposure to environmental toxicants. In the context of the pandemic, there is a dire need for an understanding of pulmonary fibrotic events. More research is needed to understand the interplay between ACE2, pulmonary fibrosis, and susceptibility to coronavirus infection. Topics: Angiotensin I; Angiotensin-Converting Enzyme 2; Cannabis; Cigarette Smoking; COVID-19; Fibrosis; Humans; Idiopathic Pulmonary Fibrosis; Inflammation; Lung; Pandemics; Peptide Fragments; Proto-Oncogene Mas; Respiration, Artificial; Respiratory Distress Syndrome; Respiratory Insufficiency; Risk Factors; SARS-CoV-2; Spike Glycoprotein, Coronavirus | 2021 |
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
The present study aimed to assess the prevalence of symptoms of anxiety and depression among health professionals in the three most affected regions in Cameroon.. The study was a descriptive cross-sectional type. Participants were health care professionals working in the three chosen regions of Cameroon. The non_probability convinient sample technique and that of the snowball were valued via a web questionnaire. The non-exhaustive sample size was 292. The diagnosis of anxiety and depression was made by the HAD (Hospital Anxiety and Depression scale).. Les auteurs rapportent que le secteur médical est classé à un plus grand risque de contracter le COVID-19 et de le propager potentiellement à d’autres. Le nombre sans cesse croissant de cas confirmés et suspects, la pression dans les soins, l’épuisement des équipements de protection individuelle et le manque de médicaments spécifiques peuvent contribuer à un vécu anxio-dépressif significatif. La présente étude s’est donnée pour ambition d’évaluer la prévalence des symptômes de l’anxiété et de la dépression chez les professionnels de santé dans les trois Régions les plus concernées au Cameroun.. Le choix des trois Régions du Cameroun se justifie non seulement par le fait qu’elles totalisent 95,8 % des cas de coronavirus au pays depuis le début de la pandémie, mais aussi parce qu’elles disposent de plus de la moitié des personnels de santé (56 %). Il s’agit d’une étude transversale, descriptive et analytique. Les participants sont des professionnels de la santé en service dans les Régions du Centre, Littoral et de l’Ouest du Cameroun. La méthode d’échantillonnage non probabiliste de convenance couplée à celle de boule de neige via un web questionnaire a été adoptée. La collecte des données a duré du 5 au 19 avril 2020, intervalle de temps après lequel on n’avait plus eu de répondants. À la fin de cette période, la taille de l’échantillon non exhaustive était de 292 professionnels. Le diagnostic de l’état anxio-dépressive était posé via l’échelle de HAD (Hospital Anxiety and Depression scale). Dans le HAD, chaque réponse cotée évalue de manière semi-quantitative l’intensité du symptôme au cours de la semaine écoulée. Un score total est obtenu ainsi que des scores aux deux sous-échelles : le score maximal est de 42 pour l’échelle globale et de 21 pour chacune des sous-échelles. Le coefficient alpha de Cronbach est de 0,70 pour la dépression et de 0,74 pour l’anxiété. Certains auteurs après plusieurs travaux ont proposé qu’une note inférieure ou égale à 7 indique une absence d’anxiété ou de dépression ; celle comprise entre 8 et 10 suggère une anxiété ou une dépression faible à bénigne ; entre 11 et 14, pour une anxiété ou une dépression modérée ; enfin, une note comprise entre 15 et 21 est révélatrice d’une anxiété sévère. Le logiciel Excel 2013 et Epi Info version 7.2.2.6 ont été utilisés pour les traitements statistiques. Les liens entre les variables ont été considérées significatifs pour une valeur de. L’amélioration des conditions de travail et notamment la fourniture d’équipement de protection, la mise en place des cellules spéciales d’écoute pour le personnel de santé pourraient être proposées.. Taken together with satisfactory selectivity index (SI) values, the acetone and methanol extracts of. During a mean follow-up period of 25.6 ± 13.9 months, 38 (18.4%) VAs and 78 (37.7%) end-stage events occurred. Big ET-1 was positively correlated with NYHA class (. In primary prevention ICD indication patients, plasma big ET-1 levels can predict VAs and end-stage events and may facilitate ICD-implantation risk stratification.. Beyond age, cognitive impairment was associated with prior MI/stroke, higher hsCRP, statin use, less education, lower eGFR, BMI and LVEF.. These data demonstrate that even a short period of detraining is harmful for elderly women who regularly participate in a program of strength training, since it impairs physical performance, insulin sensitivity and cholesterol metabolism.. Exposure to PM. Respiratory sinus arrhythmia is reduced after PVI in patients with paroxysmal AF. Our findings suggest that this is related to a decrease in cardiac vagal tone. Whether and how this affects the clinical outcome including exercise capacity need to be determined.. BDNF and leptin were not associated with weight. We found that miR-214-5p exerted a protective role in I/R injured cardiac cells by direct targeting FASLG. The results indicated that the MGO injection reduced all CCl. The hepatoprotective effects of MGO might be due to histopathological suppression and inflammation inhibition in the liver.. OVEO showed moderate antifungal activity, whereas its main components carvacrol and thymol have great application potential as natural fungicides or lead compounds for commercial fungicides in preventing and controlling plant diseases caused by. PF trajectories were mainly related to income, pregestational BMI, birth weight, hospitalisation due to respiratory diseases in childhood, participant's BMI, report of wheezing, medical diagnosis and family history of asthma, gestational exposure to tobacco and current smoking status in adolescence and young adult age.. In chronic pain patients on opioids, administration of certain benzodiazepine sedatives induced a mild respiratory depression but paradoxically reduced sleep apnoea risk and severity by increasing the respiratory arousal threshold.. Quantitative measurements of sensory disturbances using the PainVision. The serum level of 20S-proteasome may be a useful marker for disease activity in AAV.. The electrophysiological data and MD simulations collectively suggest a crucial role of the interactions between the HA helix and S4-S5 linker in the apparent Ca. Invited for the cover of this issue are Vanesa Fernández-Moreira, Nils Metzler-Nolte, M. Concepción Gimeno and co-workers at Universidad de Zaragoza and Ruhr-Universität Bochum. The image depicts the reported bimetallic bioconjugates as planes directing the gold fragment towards the target (lysosomes). Read the full text of the article at 10.1002/chem.202002067.. The optimal CRT pacing configuration changes during dobutamine infusion while LV and RV activation timing does not. Further studies investigating the usefulness of automated dynamic changes to CRT pacing configuration according to physiologic condition may be warranted. Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acrylic Resins; Actinobacillus; Acute Disease; Acute Kidney Injury; Adaptor Proteins, Signal Transducing; Adenosine; Adenosine Triphosphate; Administration, Inhalation; Administration, Oral; Adolescent; Adult; Advance Care Planning; Africa, Northern; Age Factors; Aged; Aged, 80 and over; Air Pollutants; Air Pollution; Air Pollution, Indoor; Albendazole; Aluminum Oxide; Anastomosis, Surgical; Ancylostoma; Ancylostomiasis; Androstadienes; Angiogenesis Inhibitors; Angiotensin II; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Antibodies, Bispecific; Antibodies, Viral; Anticoagulants; Antihypertensive Agents; Antinematodal Agents; Antineoplastic Agents; Antineoplastic Agents, Immunological; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antiporters; Antiviral Agents; Apoptosis; Aptamers, Nucleotide; Aromatase Inhibitors; Asian People; Astrocytes; Atrial Fibrillation; Auditory Threshold; Aurora Kinase B; Australia; Autophagy; Autophagy-Related Protein 5; Autotrophic Processes; Bacillus cereus; Bacillus thuringiensis; Bacterial Proteins; Beclin-1; Belgium; Benzene; Benzene Derivatives; Benzhydryl Compounds; beta Catenin; beta-Arrestin 2; Biliary Tract Diseases; Biofilms; Biofuels; Biomarkers; Biomarkers, Tumor; Biomass; Biomechanical Phenomena; Bioreactors; Biosensing Techniques; Biosynthetic Pathways; Bismuth; Blood Platelets; Bone and Bones; Bone Regeneration; Bortezomib; Botulinum Toxins, Type A; Brain; Brain Injuries; Brain Ischemia; Brain Neoplasms; Breast Neoplasms; Breath Tests; Bronchodilator Agents; Calcium Phosphates; Cannabis; Carbon Dioxide; Carbon Isotopes; Carcinogenesis; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Cardiac Resynchronization Therapy; Cardiac Resynchronization Therapy Devices; Cardiomyopathies; Cardiovascular Diseases; Cariostatic Agents; Case Managers; Case-Control Studies; Catalysis; Cation Transport Proteins; CD8-Positive T-Lymphocytes; Cecropia Plant; Cell Adhesion; Cell Count; Cell Differentiation; Cell Division; Cell Line; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Self Renewal; Cell Survival; Cells, Cultured; Cellular Reprogramming; Cellulose; Charcoal; Chemical and Drug Induced Liver Injury; Chemical Phenomena; Chemokines; Chemoradiotherapy; Chemoreceptor Cells; Child; Child Abuse; Child, Preschool; China; Chlorogenic Acid; Chloroquine; Chromatography, Gas; Chronic Disease; Clinical Competence; Coated Materials, Biocompatible; Cochlea; Cohort Studies; Color; Comorbidity; Computer Simulation; Computer-Aided Design; Contraception; Contraceptive Agents, Female; Contrast Media; COP-Coated Vesicles; Coronavirus Infections; Cost of Illness; Coturnix; COVID-19; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Culex; Curriculum; Cyclic N-Oxides; Cytokines; Cytoplasm; Cytotoxicity, Immunologic; Cytotoxins; Databases, Factual; Deep Learning; Delivery, Obstetric; Denitrification; Dental Caries; Denture, Complete; Dexamethasone; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dielectric Spectroscopy; Diet, High-Fat; Dietary Fiber; Disease Models, Animal; Disease Progression; DNA; DNA Copy Number Variations; DNA, Mitochondrial; Dog Diseases; Dogs; Dopaminergic Neurons; Double-Blind Method; Down-Regulation; Doxorubicin; Drug Carriers; Drug Design; Drug Interactions; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug-Related Side Effects and Adverse Reactions; Drugs, Chinese Herbal; Dry Powder Inhalers; Dust; E2F1 Transcription Factor; Ecosystem; Education, Nursing; Education, Nursing, Baccalaureate; Electric Impedance; Electricity; Electrocardiography; Electrochemical Techniques; Electrochemistry; Electrodes; Electrophoresis, Polyacrylamide Gel; Endoplasmic Reticulum; Endothelial Cells; Environmental Monitoring; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Estrogen Receptor Modulators; Europe; Evoked Potentials, Auditory, Brain Stem; Exosomes; Feasibility Studies; Female; Ferricyanides; Ferrocyanides; Fibrinogen; Finite Element Analysis; Fistula; Fluorescent Dyes; Fluorides, Topical; Fluorodeoxyglucose F18; Fluticasone; Follow-Up Studies; Food Contamination; Food Microbiology; Foods, Specialized; Forensic Medicine; Frail Elderly; France; Free Radicals; Fresh Water; Fungi; Fungicides, Industrial; Galactosamine; Gastrointestinal Neoplasms; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Frequency; Genetic Predisposition to Disease; Genotype; Gingival Hemorrhage; Glioblastoma; Glioma; Glomerular Filtration Rate; Glomerulosclerosis, Focal Segmental; Glucose; Glucose Transport Proteins, Facilitative; Glucosides; Glutamine; Glycolysis; Gold; GPI-Linked Proteins; Gram-Negative Bacteria; Gram-Positive Bacteria; Graphite; Haplotypes; HCT116 Cells; Healthy Volunteers; Hearing Loss; Heart Failure; Hedgehog Proteins; HEK293 Cells; HeLa Cells; Hemodynamics; Hemorrhage; Hepatocytes; Hippo Signaling Pathway; Histone Deacetylases; Homeostasis; Hospital Mortality; Hospitalization; Humans; Hydantoins; Hydrazines; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Hydroxylamines; Hypoglycemic Agents; Immunity, Innate; Immunoglobulin G; Immunohistochemistry; Immunologic Factors; Immunomodulation; Immunophenotyping; Immunotherapy; Incidence; Indazoles; Indonesia; Infant; Infant, Newborn; Infarction, Middle Cerebral Artery; Inflammation; Injections, Intramuscular; Insecticides; Insulin-Like Growth Factor I; Insurance, Health; Intention to Treat Analysis; Interleukin-1 Receptor-Associated Kinases; Interleukin-6; Intrauterine Devices; Intrauterine Devices, Copper; Iron; Ischemia; Jordan; Keratinocytes; Kidney; Kidney Diseases; Kir5.1 Channel; Klebsiella Infections; Klebsiella pneumoniae; Lab-On-A-Chip Devices; Laparoscopy; Lasers; Lasers, Semiconductor; Lenalidomide; Leptin; Lethal Dose 50; Levonorgestrel; Limit of Detection; Lipid Metabolism; Lipid Metabolism Disorders; Lipogenesis; Lipopolysaccharides; Liquid Biopsy; Liver; Liver Abscess, Pyogenic; Liver Cirrhosis; Liver Diseases; Liver Neoplasms; Longevity; Lung Neoplasms; Luteolin; Lymph Nodes; Lymphocyte Activation; Macaca fascicularis; Macrophages; Mad2 Proteins; Magnetic Resonance Imaging; Male; Mammary Glands, Human; Manganese; Manganese Compounds; MAP Kinase Signaling System; Materials Testing; Maternal Health Services; MCF-7 Cells; Medicaid; Medicine, Chinese Traditional; Melanoma; Membrane Proteins; Mental Health; Mercury; Metal Nanoparticles; Metals, Heavy; Metformin; Methionine Adenosyltransferase; Mice; Mice, Inbred BALB C; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Mice, Nude; Microalgae; Microbial Sensitivity Tests; Microglia; MicroRNAs; Microscopy, Atomic Force; Microscopy, Electron, Scanning; Middle Aged; Mitochondria; Mitochondrial Proteins; Mitral Valve; Mitral Valve Insufficiency; Models, Anatomic; Molecular Structure; Molybdenum; Monocarboxylic Acid Transporters; Moths; MPTP Poisoning; Multigene Family; Multiparametric Magnetic Resonance Imaging; Multiple Myeloma; Muscle, Skeletal; Mutagens; Mutation; Myeloid Cells; Nanocomposites; Nanofibers; Nanomedicine; Nanoparticles; Nanowires; Neoadjuvant Therapy; Neomycin; Neoplasm Grading; Neoplasm Recurrence, Local; Neoplasms; Neoplastic Stem Cells; Neostriatum; Neovascularization, Pathologic; Netherlands; Neuromuscular Agents; Neurons; NF-E2-Related Factor 2; NF-kappa B; Nickel; Nitrogen Oxides; Non-alcoholic Fatty Liver Disease; Nucleosides; Nucleotidyltransferases; Nutritional Status; Obesity, Morbid; Ofloxacin; Oils, Volatile; Oligopeptides; Oncogene Protein v-akt; Optical Imaging; Organic Cation Transport Proteins; Organophosphonates; Osteoarthritis; Osteoarthritis, Hip; Osteoarthritis, Knee; Osteoblasts; Osteogenesis; Oxidation-Reduction; Oxidative Stress; Oxides; Oxygen Isotopes; Pancreas; Pancreaticoduodenectomy; Pandemics; Particle Size; Particulate Matter; Patient Acceptance of Health Care; Patient Compliance; PC-3 Cells; Peptide Fragments; Peptides; Periodontal Attachment Loss; Periodontal Index; Periodontal Pocket; Periodontitis; Peroxides; Peru; Pest Control, Biological; Phosphatidylinositol 3-Kinase; Phosphatidylinositol 3-Kinases; Phylogeny; Pilot Projects; Piperidines; Plant Bark; Plant Extracts; Plant Leaves; Plasmids; Platelet Function Tests; Pneumonia, Viral; Podocytes; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Polyethylene Terephthalates; Polymers; Polymorphism, Single Nucleotide; Porosity; Portugal; Positron-Emission Tomography; Postoperative Complications; Postural Balance; Potassium Channels, Inwardly Rectifying; Povidone; Powders; Precancerous Conditions; Precision Medicine; Predictive Value of Tests; Pregnancy; Prenatal Care; Prognosis; Promoter Regions, Genetic; Prospective Studies; Prostatectomy; Prostatic Neoplasms; Proteasome Inhibitors; Protective Agents; Protein Binding; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Protein Transport; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Psychiatric Nursing; PTEN Phosphohydrolase; Pulmonary Embolism; Pyrimethamine; Radiopharmaceuticals; Rats; Rats, Sprague-Dawley; Rats, Wistar; Reactive Oxygen Species; Receptor, ErbB-2; Receptor, IGF Type 1; Receptors, Estrogen; Receptors, G-Protein-Coupled; Recombinational DNA Repair; Recovery of Function; Regional Blood Flow; Renal Dialysis; Renin; Renin-Angiotensin System; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Distress Syndrome; Retrospective Studies; Rhodamines; Risk Assessment; Risk Factors; RNA, Long Noncoding; RNA, Messenger; Running; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salinity; Salmeterol Xinafoate; Sarcoma; Seasons; Shoulder Injuries; Signal Transduction; Silicon Dioxide; Silver; Sirtuin 1; Sirtuins; Skull Fractures; Social Determinants of Health; Sodium; Sodium Fluoride; Sodium Potassium Chloride Symporter Inhibitors; Sodium-Glucose Transporter 2 Inhibitors; Soil; Soil Pollutants; Spain; Spectrophotometry; Spectroscopy, Fourier Transform Infrared; Staphylococcal Protein A; Staphylococcus aureus; Stem Cells; Stereoisomerism; Stomach Neoplasms; Streptomyces; Strontium; Structure-Activity Relationship; Students, Nursing; Substance-Related Disorders; Succinic Acid; Sulfur; Surface Properties; Survival Rate; Survivin; Symporters; T-Lymphocytes; Temozolomide; Tensile Strength; Thiazoles; Thiobacillus; Thiohydantoins; Thiourea; Thrombectomy; Time Factors; Titanium; Tobacco Mosaic Virus; Tobacco Use Disorder; Toll-Like Receptor 4; Toluene; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Toxicity Tests, Acute; Toxicity Tests, Subacute; Transcriptional Activation; Treatment Outcome; Troponin I; Tumor Cells, Cultured; Tumor Escape; Tumor Hypoxia; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Tyrosine; Ubiquitin-Protein Ligases; Ubiquitination; Ultrasonic Waves; United Kingdom; United States; United States Department of Veterans Affairs; Up-Regulation; Urea; Uric Acid; Urinary Bladder Neoplasms; Urinary Bladder, Neurogenic; Urine; Urodynamics; User-Computer Interface; Vemurafenib; Verbenaceae; Veterans; Veterans Health; Viral Load; Virtual Reality; Vitiligo; Water Pollutants, Chemical; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Xylenes; Young Adult; Zinc; Zinc Oxide; Zinc Sulfate; Zoonoses | 2021 |
Association between chronic psychoactive substances use and systemic inflammation: A systematic review and meta-analysis.
Topics: Amphetamines; Analgesics, Opioid; Cannabis; Cocaine; Humans; Inflammation | 2021 |
Cancer Initiation, Progression and Resistance: Are Phytocannabinoids from
Topics: Allosteric Site; Animals; Antineoplastic Agents; Cannabinoids; Cannabis; Central Nervous System; Clinical Trials as Topic; Disease Progression; Drug Resistance, Neoplasm; Endocannabinoids; Humans; Immune System; Inflammation; Neoplasms; Oxidative Stress; Phytochemicals; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Treatment Outcome | 2021 |
Endocannabinoid System and Its Regulation by Polyunsaturated Fatty Acids and Full Spectrum Hemp Oils.
The endocannabinoid system (ECS) consists of endogenous cannabinoids, their receptors, and metabolic enzymes that play a critical homeostatic role in modulating polyunsaturated omega fatty acid (PUFA) signaling to maintain a balanced inflammatory and redox state. Whole food-based diets and dietary interventions linked to PUFAs of animal (fish, calamari, krill) or plant (hemp, flax, walnut, algae) origin, as well as full-spectrum hemp oils, are increasingly used to support the ECS tone, promote healthy metabolism, improve risk factors associated with cardiovascular disorders, encourage brain health and emotional well-being, and ameliorate inflammation. While hemp cannabinoids of THC and CBD groups show distinct but complementary actions through a variety of cannabinoid (CB1 and CB2), adenosine (A2A), and vanilloid (TRPV1) receptors, they also modulate PUFA metabolism within a wide variety of specialized lipid mediators that promote or resolve inflammation and oxidative stress. Clinical evidence reviewed in this study links PUFAs and cannabinoids to changes in ECS tone, immune function, metabolic and oxidative stress adaptation, and overall maintenance of a well-balanced systemic function of the body. Understanding how the body coordinates signals from the exogenous and endogenous ECS modulators is critical for discerning the underlying molecular mechanisms of the ECS tone in healthy and disease states. Nutritional and lifestyle interventions represent promising approaches to address chronic metabolic and inflammatory disorders that may overlap in the population at risk. Further investigation and validation of dietary interventions that modulate the ECS are required in order to devise clinically successful second-generation management strategies. Topics: Adenosine; Animals; Cannabinoids; Cannabis; Diet; Endocannabinoids; Fatty Acids, Unsaturated; Homeostasis; Humans; Inflammation; Lipid Metabolism; Oxidative Stress; Plant Extracts; Signal Transduction; TRPV Cation Channels | 2021 |
The Therapeutic Potential of Cannabis in Counteracting Oxidative Stress and Inflammation.
Significant growth of interest in cannabis ( Topics: Analgesics; Animals; Anti-Inflammatory Agents; Antioxidants; Cannabinoids; Cannabis; Humans; Inflammation; Molecular Structure; Oxidative Stress; Structure-Activity Relationship | 2021 |
Cannabis and Inflammation in HIV: A Review of Human and Animal Studies.
Persistent inflammation occurs in people with HIV (PWH) and has many downstream adverse effects including myocardial infarction, neurocognitive impairment and death. Because the proportion of people with HIV who use cannabis is high and cannabis may be anti-inflammatory, it is important to characterize the impact of cannabis use on inflammation specifically in PWH. We performed a selective, non-exhaustive review of the literature on the effects of cannabis on inflammation in PWH. Research in this area suggests that cannabinoids are anti-inflammatory in the setting of HIV. Anti-inflammatory actions are mediated in many cases through effects on the endocannabinoid system (ECS) in the gut, and through stabilization of gut-blood barrier integrity. Cannabidiol may be particularly important as an anti-inflammatory cannabinoid. Cannabis may provide a beneficial intervention to reduce morbidity related to inflammation in PWH. Topics: Animals; Anti-Inflammatory Agents; Cannabinoids; Cannabis; Disease Models, Animal; Gastrointestinal Microbiome; HIV Infections; Humans; Inflammation | 2021 |
Cannabidiol As A Novel Therapeutic Strategy For Oral Inflammatory Diseases: A Review Of Current Knowledge And Future Perspectives.
The high frequency and painful profile of inflammatory oral lesions and the lack of an effective drug protocol for their management stimulate the search for pharmacological alternatives for the treatment of these conditions. Cannabidiol is the major non-psychotropic constituent of Cannabis sativa, receiving lately scientific interest because of its potential in the treatment of inflammatory disorders such as asthma, colitis and arthritis. There is little published in the current literature about the use of cannabidiol in oral health. Among its many protective functions, the ability to attenuate inflammation through the modulation of cytokines and its antiedema and analgesic effects may be important features in the treatment of oral lesions. In this review, we suggest that cannabidiol can be useful in the management of oral inflammatory disorders. Topics: Anti-Inflammatory Agents, Non-Steroidal; Cannabidiol; Cannabis; Cytokines; Humans; Inflammation; Mouth Diseases; Pain | 2020 |
Critically ill patients with sepsis require a multidisciplinary approach, as this situation implies multiorgan distress, with most of the bodily biochemical and cellular systems being affected by the condition. Moreover, sepsis is characterized by a multitude of biochemical interactions and by dynamic changes of the immune system. At the moment, there is a gap in our understanding of the cellular, genetic, and molecular mechanisms involved in sepsis. One of the systems intensely studied in recent years is the endocannabinoid signaling pathway, as light was shed over a series of important interactions of cannabinoid receptors with biochemical pathways, specifically for sepsis. Furthermore, a series of important implications on inflammation and the immune system that are induced by the activity of cannabinoid receptors stimulated by the delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) have been noticed. One of the most important is their ability to reduce the biosynthesis of pro-inflammatory mediators and the modulation of immune mechanisms. Different studies have reported that cannabinoids can reduce oxidative stress at mitochondrial and cellular levels. The aim of this review paper was to present, in detail, the important mechanisms modulated by the endocannabinoid signaling pathway, as well as of the molecular and cellular links it has with sepsis. At the same time, we wish to present the possible implications of cannabinoids in the most important biological pathways involved in sepsis, such as inflammation, redox activity, immune system, and epigenetic expression. Topics: Cannabis; Critical Illness; Endocannabinoids; Humans; Inflammation; MicroRNAs; Oxidative Stress; Sepsis | 2020 |
The molecular mechanisms that underpin the biological benefits of full-spectrum cannabis extract in the treatment of neuropathic pain and inflammation.
Cannabis has been shown to be beneficial in the treatment of pain and inflammatory diseases. The biological effect of cannabis is mainly attributed to two major cannabinoids, tetrahydrocannabinol and cannabidiol. In the majority of studies to-date, a purified tetrahydrocannabinol and cannabidiol alone or in combination have been extensively examined in many studies for the treatment of numerous disorders including pain and inflammation. However, few studies have investigated the biological benefits of full-spectrum cannabis plant extract. Given that cannabis is known to generate a large number of cannabinoids along with numerous other biologically relevant products including terpenes, studies involving purified tetrahydrocannabinol and/or cannabidiol do not consider the potential biological benefits of the full-spectrum cannabis extracts. This may be especially true in the case of cannabis as a potential treatment of pain and inflammation. Herein, we review the pre-clinical physiological and molecular mechanisms in biological systems that are affected by cannabis. Topics: Cannabidiol; Cannabinoids; Cannabis; Dronabinol; Humans; Inflammation; Neuralgia; Plant Extracts | 2020 |
Cannabis and the Gastrointestinal Tract.
Cannabis has been used for its medicinal purposes since ancient times. Its consumption leads to the activation of Cannabis receptors CB1 and CB2 that, through specific mechanisms can lead to modulation and progression of inflammation or repair. The novel findings are linked to the medical use of Cannabis in gastrointestinal (GI) system.. The objective of the present paper is to elucidate the role of Cannabis consumption in GI system. An additional aim is to review the information on the function of Cannabis in non-alcoholic fatty liver disease (NAFLD).. This review summarizes the recent findings on the role of cannabinoid receptors, their synthetic or natural ligands, as well as their metabolizing enzymes in normal GI function and its disorders, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD) and possible adverse events. The synergism or antagonism between Cannabis' active ingredients and the "entourage" plays a role in the efficacy of various strains. Some elements of Cannabis may alter disease severity as over-activation of Cannabis receptors CB1 and CB2 can lead to changes of the commensal gut flora. The endocannabinoid system (ECS) contributes to gut homeostasis. The ability of ECS to modulate inflammatory responses demonstrates the capacity of ECS to preserve gastrointestinal (GI) function. Alterations of the ECS may predispose patients to pathologic disorders, including IBD. Clinical studies in IBD demonstrate that subjects benefit from Cannabis consumption as seen through a reduction of the IBD-inflammation, as well as through a decreased need for other medication. NAFLD is characterized by fat accumulation in the liver. The occurrence of inflammation in NAFLD leads to non-alcoholic-steatohepatitis (NASH). The use of Cannabis might reduce liver inflammation.. With limited evidence of efficacy and safety of Cannabis in IBD, IBS, and NAFLD, randomized controlled studies are required to examine its therapeutic efficacy. Moreover, since long term use of the plant leads to drug use disorders the patients should be followed continuously. Topics: Cannabis; Endocannabinoids; Gastrointestinal Diseases; Gastrointestinal Tract; Humans; Inflammation; Medical Marijuana; Non-alcoholic Fatty Liver Disease; Randomized Controlled Trials as Topic; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2020 |
Biological effects of Cannabidiol on normal human healthy cell populations: Systematic review of the literature.
A systematic review was performed to evaluate the biological effects of Cannabidiol (CBD), one of the major components of Cannabis Sativa, on normal human healthy cell populations in terms of cell viability, proliferation, migration, apoptosis and inflammation. Inclusion criteria were: studies on cell lines and primary cell culture from healthy donors, CBD exposure as variable, no CBD exposure as control and published in English language. Quality assessment was based on ToxR tool, with a score of reliability ranging from 15 to 18.Following the PRISMA statement, three independent reviewers performed both a manual and an electronic search using MEDLINE via PubMed, Scopus, Web of Science and Cochrane. From a total of 9437eligible articles, 29 studies have been selected. The average quality assessment score was 16.48.Theresults showed heterogeneous CBD concentration exposure (0.01-50 μM or 0.1 nmol/mL-15 mg/mL). The definition of a threshold limit would allow the identification of specific effects on expected outcomes. From the data obtained CBD resulted to inhibit cell viability in a dose-dependent manner above 2 μM, while in oral cell populations the inhibitory concentration is higher than 10 μM. Moreover, it was observed a significantly inhibition of cell migration and proliferation. On the contrary, it was highlighted a stimulation of apoptosis only at high doses (from 10 μM).Finally, CBD produced an anti-inflammatory effect, with a reduction of the pro-inflammatory cytokine gene expression and secretion. CBD down-regulated ROS production, although at high concentrations (16 μM) increased ROS-related genes expression. The diffusion of CBD for therapeutic and recreational uses require a precise definition of its potential biological effects. A thorough knowledge of these aspects would allow a safe use of this substance without any possible side effects. Topics: Animals; Anti-Inflammatory Agents; Cannabidiol; Cannabis; Cell Movement; Cell Proliferation; Cell Survival; Humans; Inflammation | 2020 |
Practical considerations in medical cannabis administration and dosing.
Cannabis has been employed medicinally throughout history, but its recent legal prohibition, biochemical complexity and variability, quality control issues, previous dearth of appropriately powered randomised controlled trials, and lack of pertinent education have conspired to leave clinicians in the dark as to how to advise patients pursuing such treatment. With the advent of pharmaceutical cannabis-based medicines (Sativex/nabiximols and Epidiolex), and liberalisation of access in certain nations, this ignorance of cannabis pharmacology and therapeutics has become untenable. In this article, the authors endeavour to present concise data on cannabis pharmacology related to tetrahydrocannabinol (THC), cannabidiol (CBD) et al., methods of administration (smoking, vaporisation, oral), and dosing recommendations. Adverse events of cannabis medicine pertain primarily to THC, whose total daily dose-equivalent should generally be limited to 30mg/day or less, preferably in conjunction with CBD, to avoid psychoactive sequelae and development of tolerance. CBD, in contrast to THC, is less potent, and may require much higher doses for its adjunctive benefits on pain, inflammation, and attenuation of THC-associated anxiety and tachycardia. Dose initiation should commence at modest levels, and titration of any cannabis preparation should be undertaken slowly over a period of as much as two weeks. Suggestions are offered on cannabis-drug interactions, patient monitoring, and standards of care, while special cases for cannabis therapeutics are addressed: epilepsy, cancer palliation and primary treatment, chronic pain, use in the elderly, Parkinson disease, paediatrics, with concomitant opioids, and in relation to driving and hazardous activities. Topics: Cannabidiol; Cannabis; Dose-Response Relationship, Drug; Dronabinol; Drug Administration Schedule; Drug Combinations; Humans; Inflammation; Medical Marijuana; Pain | 2018 |
Periodontal complications of prescription and recreational drugs.
Drug use for both therapeutic and recreational purposes is very widespread in most societies. The range of drugs used, the variations in response to these drugs and other health and behavioral confounders mean that drug use may be an important contributor to individualized periodontal diagnoses. In this narrative review, we review the main reported effects of drugs on the periodontal tissues and periodontal disease processes. Although some of the more common adverse drug reactions on periodontal tissues are well described, in many other cases the evidence for these drug effects is quite limited and based on small case series or isolated reports. Prescription drugs are responsible for a range of effects, including drug-induced gingival overgrowth and increased gingival bleeding, and influence periodontal inflammation and periodontal breakdown. The effects of recreational drugs on the periodontal tissues is less well researched, perhaps for the obvious reason that assembling large cohorts of recreational drug users presents particular challenges. Use of nearly all of these substances is associated with poorer periodontal and dental health, although there is almost certainly a large degree of behavioral confounding in these findings. Overall, further studies of adverse drug reactions on the periodontal tissues are required as this continues to be an important and increasing factor in periodontal health determination. Topics: Analgesics, Opioid; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Calcium Channel Blockers; Cannabis; Contraceptives, Oral; Cyclosporine; Diphosphonates; Gingiva; Gingival Overgrowth; Hallucinogens; Hormone Replacement Therapy; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Illicit Drugs; Immunosuppressive Agents; Inflammation; Methadone; Periodontal Diseases; Periodontal Index; Periodontium; Phenytoin; Platelet Aggregation Inhibitors; Tropanes | 2018 |
Cannabinoids and atherosclerotic coronary heart disease.
Marijuana is the most abused recreational drug in the United States. Cannabinoids, the active ingredients of marijuana, affect multiple organ systems in the human body. The pharmacologic effects of marijuana, based on stimulation of cannabinoid receptors CB1 and CB2, which are widely distributed in the cardiovascular system, have been well described. Activation of these receptors modulates the function of various cellular elements of the vessel wall, and may contribute to the pathogenesis of atherosclerosis. Clinically, there are reports linking marijuana smoking to the precipitation of angina and acute coronary syndromes. Recently, large published clinical trials with CB1 antagonist rimonabant did not show any significant benefit of this agent in preventing progression of atherosclerosis. In light of these findings and emerging data on multiple pathways linking cannabinoids to atherosclerosis, we discuss the literature on the role of cannabinoids in the pathophysiology of atherosclerosis. We also propose a marijuana paradox, which implies that inhalation of marijuana may be linked to precipitation of acute coronary syndromes, but modulation of the endocannabinoid system by a noninhalation route may have a salutary effect on the development of atherosclerosis. Topics: Cannabinoids; Cannabis; Coronary Artery Disease; Coronary Vessels; Endothelium, Vascular; Humans; Inflammation; Lipid Metabolism; United States | 2012 |
Cannabinoids, endocannabinoids, and related analogs in inflammation.
This review covers reports published in the last 5 years on the anti-inflammatory activities of all classes of cannabinoids, including phytocannabinoids such as tetrahydrocannabinol and cannabidiol, synthetic analogs such as ajulemic acid and nabilone, the endogenous cannabinoids anandamide and related compounds, namely, the elmiric acids, and finally, noncannabinoid components of Cannabis that show anti-inflammatory action. It is intended to be an update on the topic of the involvement of cannabinoids in the process of inflammation. A possible mechanism for these actions is suggested involving increased production of eicosanoids that promote the resolution of inflammation. This differentiates these cannabinoids from cyclooxygenase-2 inhibitors that suppress the synthesis of eicosanoids that promote the induction of the inflammatory process. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; Cannabis; Disease Models, Animal; Dronabinol; Drug Evaluation, Preclinical; Eicosanoids; Endocannabinoids; Fibromyalgia; Glycine; Humans; Inflammation; Mice; Plant Oils; Randomized Controlled Trials as Topic; Rats; Receptors, Cannabinoid | 2009 |
Cannabinoid-induced immune suppression and modulation of antigen-presenting cells.
The study of marijuana cannabinoid biology has led to many important discoveries in neuroscience and immunology. These studies have uncovered a new physiological system, the endocannabinoid system, which operates in the regulation of not only brain function but also the regulation of the immune system. Studies examining the effect of cannabinoid-based drugs on immunity have shown that many cellular and cytokine mechanisms are suppressed by these agents leading to the hypothesis that these drugs may be of value in the management of chronic inflammatory diseases. In this report, we review current information on cannabinoid ligand and receptor biology, mechanisms involved in immune suppression by cannabinoids with emphasis on antigen-presenting cells, and preclinical and clinical models analyzing the therapeutic potential of cannabinoid-based drugs. Topics: Animals; Antigen-Presenting Cells; Cannabinoids; Cannabis; Humans; Inflammation; Receptors, Cannabinoid | 2006 |
Prospects for cannabinoids as anti-inflammatory agents.
The marijuana plant (Cannabis sativa) and preparations derived from it have been used for medicinal purposes for thousands of years. It is likely that the therapeutic benefits of smoked marijuana are due to some combination of its more than 60 cannabinoids and 200-250 non-cannabinoid constituents. Several marijuana constituents, the carboxylic acid metabolites of tetrahydrocannabinol, and synthetic analogs are free of cannabimimetic central nervous system activity, do not produce behavioral changes in humans, and are effective antiinflammatory and analgesic agents. One cannabinoid acid in particular, ajulemic acid, has been studied extensively in in vitro systems and animal models of inflammation and immune responses. This commentary reviews a portion of the work done by investigators interested in separating the medicinal properties of marijuana from its psychoactive effects. Understanding the mechanisms of the therapeutic effects of nonpsychoactive cannabinoids should lead to development of safe effective treatment for several diseases, and may render moot the debate about "medical marijuana". Topics: Animals; Anti-Inflammatory Agents; Behavior; Cannabinoids; Cannabis; Humans; Inflammation; Molecular Structure | 2003 |
3 trial(s) available for humulene and Inflammation
Article | Year |
---|---|
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
The present study aimed to assess the prevalence of symptoms of anxiety and depression among health professionals in the three most affected regions in Cameroon.. The study was a descriptive cross-sectional type. Participants were health care professionals working in the three chosen regions of Cameroon. The non_probability convinient sample technique and that of the snowball were valued via a web questionnaire. The non-exhaustive sample size was 292. The diagnosis of anxiety and depression was made by the HAD (Hospital Anxiety and Depression scale).. Les auteurs rapportent que le secteur médical est classé à un plus grand risque de contracter le COVID-19 et de le propager potentiellement à d’autres. Le nombre sans cesse croissant de cas confirmés et suspects, la pression dans les soins, l’épuisement des équipements de protection individuelle et le manque de médicaments spécifiques peuvent contribuer à un vécu anxio-dépressif significatif. La présente étude s’est donnée pour ambition d’évaluer la prévalence des symptômes de l’anxiété et de la dépression chez les professionnels de santé dans les trois Régions les plus concernées au Cameroun.. Le choix des trois Régions du Cameroun se justifie non seulement par le fait qu’elles totalisent 95,8 % des cas de coronavirus au pays depuis le début de la pandémie, mais aussi parce qu’elles disposent de plus de la moitié des personnels de santé (56 %). Il s’agit d’une étude transversale, descriptive et analytique. Les participants sont des professionnels de la santé en service dans les Régions du Centre, Littoral et de l’Ouest du Cameroun. La méthode d’échantillonnage non probabiliste de convenance couplée à celle de boule de neige via un web questionnaire a été adoptée. La collecte des données a duré du 5 au 19 avril 2020, intervalle de temps après lequel on n’avait plus eu de répondants. À la fin de cette période, la taille de l’échantillon non exhaustive était de 292 professionnels. Le diagnostic de l’état anxio-dépressive était posé via l’échelle de HAD (Hospital Anxiety and Depression scale). Dans le HAD, chaque réponse cotée évalue de manière semi-quantitative l’intensité du symptôme au cours de la semaine écoulée. Un score total est obtenu ainsi que des scores aux deux sous-échelles : le score maximal est de 42 pour l’échelle globale et de 21 pour chacune des sous-échelles. Le coefficient alpha de Cronbach est de 0,70 pour la dépression et de 0,74 pour l’anxiété. Certains auteurs après plusieurs travaux ont proposé qu’une note inférieure ou égale à 7 indique une absence d’anxiété ou de dépression ; celle comprise entre 8 et 10 suggère une anxiété ou une dépression faible à bénigne ; entre 11 et 14, pour une anxiété ou une dépression modérée ; enfin, une note comprise entre 15 et 21 est révélatrice d’une anxiété sévère. Le logiciel Excel 2013 et Epi Info version 7.2.2.6 ont été utilisés pour les traitements statistiques. Les liens entre les variables ont été considérées significatifs pour une valeur de. L’amélioration des conditions de travail et notamment la fourniture d’équipement de protection, la mise en place des cellules spéciales d’écoute pour le personnel de santé pourraient être proposées.. Taken together with satisfactory selectivity index (SI) values, the acetone and methanol extracts of. During a mean follow-up period of 25.6 ± 13.9 months, 38 (18.4%) VAs and 78 (37.7%) end-stage events occurred. Big ET-1 was positively correlated with NYHA class (. In primary prevention ICD indication patients, plasma big ET-1 levels can predict VAs and end-stage events and may facilitate ICD-implantation risk stratification.. Beyond age, cognitive impairment was associated with prior MI/stroke, higher hsCRP, statin use, less education, lower eGFR, BMI and LVEF.. These data demonstrate that even a short period of detraining is harmful for elderly women who regularly participate in a program of strength training, since it impairs physical performance, insulin sensitivity and cholesterol metabolism.. Exposure to PM. Respiratory sinus arrhythmia is reduced after PVI in patients with paroxysmal AF. Our findings suggest that this is related to a decrease in cardiac vagal tone. Whether and how this affects the clinical outcome including exercise capacity need to be determined.. BDNF and leptin were not associated with weight. We found that miR-214-5p exerted a protective role in I/R injured cardiac cells by direct targeting FASLG. The results indicated that the MGO injection reduced all CCl. The hepatoprotective effects of MGO might be due to histopathological suppression and inflammation inhibition in the liver.. OVEO showed moderate antifungal activity, whereas its main components carvacrol and thymol have great application potential as natural fungicides or lead compounds for commercial fungicides in preventing and controlling plant diseases caused by. PF trajectories were mainly related to income, pregestational BMI, birth weight, hospitalisation due to respiratory diseases in childhood, participant's BMI, report of wheezing, medical diagnosis and family history of asthma, gestational exposure to tobacco and current smoking status in adolescence and young adult age.. In chronic pain patients on opioids, administration of certain benzodiazepine sedatives induced a mild respiratory depression but paradoxically reduced sleep apnoea risk and severity by increasing the respiratory arousal threshold.. Quantitative measurements of sensory disturbances using the PainVision. The serum level of 20S-proteasome may be a useful marker for disease activity in AAV.. The electrophysiological data and MD simulations collectively suggest a crucial role of the interactions between the HA helix and S4-S5 linker in the apparent Ca. Invited for the cover of this issue are Vanesa Fernández-Moreira, Nils Metzler-Nolte, M. Concepción Gimeno and co-workers at Universidad de Zaragoza and Ruhr-Universität Bochum. The image depicts the reported bimetallic bioconjugates as planes directing the gold fragment towards the target (lysosomes). Read the full text of the article at 10.1002/chem.202002067.. The optimal CRT pacing configuration changes during dobutamine infusion while LV and RV activation timing does not. Further studies investigating the usefulness of automated dynamic changes to CRT pacing configuration according to physiologic condition may be warranted. Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acrylic Resins; Actinobacillus; Acute Disease; Acute Kidney Injury; Adaptor Proteins, Signal Transducing; Adenosine; Adenosine Triphosphate; Administration, Inhalation; Administration, Oral; Adolescent; Adult; Advance Care Planning; Africa, Northern; Age Factors; Aged; Aged, 80 and over; Air Pollutants; Air Pollution; Air Pollution, Indoor; Albendazole; Aluminum Oxide; Anastomosis, Surgical; Ancylostoma; Ancylostomiasis; Androstadienes; Angiogenesis Inhibitors; Angiotensin II; Animals; Anti-Bacterial Agents; Anti-Infective Agents; Antibodies, Bispecific; Antibodies, Viral; Anticoagulants; Antihypertensive Agents; Antinematodal Agents; Antineoplastic Agents; Antineoplastic Agents, Immunological; Antineoplastic Combined Chemotherapy Protocols; Antioxidants; Antiporters; Antiviral Agents; Apoptosis; Aptamers, Nucleotide; Aromatase Inhibitors; Asian People; Astrocytes; Atrial Fibrillation; Auditory Threshold; Aurora Kinase B; Australia; Autophagy; Autophagy-Related Protein 5; Autotrophic Processes; Bacillus cereus; Bacillus thuringiensis; Bacterial Proteins; Beclin-1; Belgium; Benzene; Benzene Derivatives; Benzhydryl Compounds; beta Catenin; beta-Arrestin 2; Biliary Tract Diseases; Biofilms; Biofuels; Biomarkers; Biomarkers, Tumor; Biomass; Biomechanical Phenomena; Bioreactors; Biosensing Techniques; Biosynthetic Pathways; Bismuth; Blood Platelets; Bone and Bones; Bone Regeneration; Bortezomib; Botulinum Toxins, Type A; Brain; Brain Injuries; Brain Ischemia; Brain Neoplasms; Breast Neoplasms; Breath Tests; Bronchodilator Agents; Calcium Phosphates; Cannabis; Carbon Dioxide; Carbon Isotopes; Carcinogenesis; Carcinoma, Hepatocellular; Carcinoma, Non-Small-Cell Lung; Carcinoma, Squamous Cell; Cardiac Resynchronization Therapy; Cardiac Resynchronization Therapy Devices; Cardiomyopathies; Cardiovascular Diseases; Cariostatic Agents; Case Managers; Case-Control Studies; Catalysis; Cation Transport Proteins; CD8-Positive T-Lymphocytes; Cecropia Plant; Cell Adhesion; Cell Count; Cell Differentiation; Cell Division; Cell Line; Cell Line, Tumor; Cell Membrane; Cell Movement; Cell Proliferation; Cell Self Renewal; Cell Survival; Cells, Cultured; Cellular Reprogramming; Cellulose; Charcoal; Chemical and Drug Induced Liver Injury; Chemical Phenomena; Chemokines; Chemoradiotherapy; Chemoreceptor Cells; Child; Child Abuse; Child, Preschool; China; Chlorogenic Acid; Chloroquine; Chromatography, Gas; Chronic Disease; Clinical Competence; Coated Materials, Biocompatible; Cochlea; Cohort Studies; Color; Comorbidity; Computer Simulation; Computer-Aided Design; Contraception; Contraceptive Agents, Female; Contrast Media; COP-Coated Vesicles; Coronavirus Infections; Cost of Illness; Coturnix; COVID-19; Creatinine; Cross-Over Studies; Cross-Sectional Studies; Culex; Curriculum; Cyclic N-Oxides; Cytokines; Cytoplasm; Cytotoxicity, Immunologic; Cytotoxins; Databases, Factual; Deep Learning; Delivery, Obstetric; Denitrification; Dental Caries; Denture, Complete; Dexamethasone; Diabetes Complications; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dielectric Spectroscopy; Diet, High-Fat; Dietary Fiber; Disease Models, Animal; Disease Progression; DNA; DNA Copy Number Variations; DNA, Mitochondrial; Dog Diseases; Dogs; Dopaminergic Neurons; Double-Blind Method; Down-Regulation; Doxorubicin; Drug Carriers; Drug Design; Drug Interactions; Drug Resistance, Bacterial; Drug Resistance, Neoplasm; Drug-Related Side Effects and Adverse Reactions; Drugs, Chinese Herbal; Dry Powder Inhalers; Dust; E2F1 Transcription Factor; Ecosystem; Education, Nursing; Education, Nursing, Baccalaureate; Electric Impedance; Electricity; Electrocardiography; Electrochemical Techniques; Electrochemistry; Electrodes; Electrophoresis, Polyacrylamide Gel; Endoplasmic Reticulum; Endothelial Cells; Environmental Monitoring; Enzyme Inhibitors; Epithelial Cells; Epithelial-Mesenchymal Transition; Esophageal Neoplasms; Esophageal Squamous Cell Carcinoma; Estrogen Receptor Modulators; Europe; Evoked Potentials, Auditory, Brain Stem; Exosomes; Feasibility Studies; Female; Ferricyanides; Ferrocyanides; Fibrinogen; Finite Element Analysis; Fistula; Fluorescent Dyes; Fluorides, Topical; Fluorodeoxyglucose F18; Fluticasone; Follow-Up Studies; Food Contamination; Food Microbiology; Foods, Specialized; Forensic Medicine; Frail Elderly; France; Free Radicals; Fresh Water; Fungi; Fungicides, Industrial; Galactosamine; Gastrointestinal Neoplasms; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Gene Frequency; Genetic Predisposition to Disease; Genotype; Gingival Hemorrhage; Glioblastoma; Glioma; Glomerular Filtration Rate; Glomerulosclerosis, Focal Segmental; Glucose; Glucose Transport Proteins, Facilitative; Glucosides; Glutamine; Glycolysis; Gold; GPI-Linked Proteins; Gram-Negative Bacteria; Gram-Positive Bacteria; Graphite; Haplotypes; HCT116 Cells; Healthy Volunteers; Hearing Loss; Heart Failure; Hedgehog Proteins; HEK293 Cells; HeLa Cells; Hemodynamics; Hemorrhage; Hepatocytes; Hippo Signaling Pathway; Histone Deacetylases; Homeostasis; Hospital Mortality; Hospitalization; Humans; Hydantoins; Hydrazines; Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Hydroxylamines; Hypoglycemic Agents; Immunity, Innate; Immunoglobulin G; Immunohistochemistry; Immunologic Factors; Immunomodulation; Immunophenotyping; Immunotherapy; Incidence; Indazoles; Indonesia; Infant; Infant, Newborn; Infarction, Middle Cerebral Artery; Inflammation; Injections, Intramuscular; Insecticides; Insulin-Like Growth Factor I; Insurance, Health; Intention to Treat Analysis; Interleukin-1 Receptor-Associated Kinases; Interleukin-6; Intrauterine Devices; Intrauterine Devices, Copper; Iron; Ischemia; Jordan; Keratinocytes; Kidney; Kidney Diseases; Kir5.1 Channel; Klebsiella Infections; Klebsiella pneumoniae; Lab-On-A-Chip Devices; Laparoscopy; Lasers; Lasers, Semiconductor; Lenalidomide; Leptin; Lethal Dose 50; Levonorgestrel; Limit of Detection; Lipid Metabolism; Lipid Metabolism Disorders; Lipogenesis; Lipopolysaccharides; Liquid Biopsy; Liver; Liver Abscess, Pyogenic; Liver Cirrhosis; Liver Diseases; Liver Neoplasms; Longevity; Lung Neoplasms; Luteolin; Lymph Nodes; Lymphocyte Activation; Macaca fascicularis; Macrophages; Mad2 Proteins; Magnetic Resonance Imaging; Male; Mammary Glands, Human; Manganese; Manganese Compounds; MAP Kinase Signaling System; Materials Testing; Maternal Health Services; MCF-7 Cells; Medicaid; Medicine, Chinese Traditional; Melanoma; Membrane Proteins; Mental Health; Mercury; Metal Nanoparticles; Metals, Heavy; Metformin; Methionine Adenosyltransferase; Mice; Mice, Inbred BALB C; Mice, Inbred C3H; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Knockout; Mice, Nude; Microalgae; Microbial Sensitivity Tests; Microglia; MicroRNAs; Microscopy, Atomic Force; Microscopy, Electron, Scanning; Middle Aged; Mitochondria; Mitochondrial Proteins; Mitral Valve; Mitral Valve Insufficiency; Models, Anatomic; Molecular Structure; Molybdenum; Monocarboxylic Acid Transporters; Moths; MPTP Poisoning; Multigene Family; Multiparametric Magnetic Resonance Imaging; Multiple Myeloma; Muscle, Skeletal; Mutagens; Mutation; Myeloid Cells; Nanocomposites; Nanofibers; Nanomedicine; Nanoparticles; Nanowires; Neoadjuvant Therapy; Neomycin; Neoplasm Grading; Neoplasm Recurrence, Local; Neoplasms; Neoplastic Stem Cells; Neostriatum; Neovascularization, Pathologic; Netherlands; Neuromuscular Agents; Neurons; NF-E2-Related Factor 2; NF-kappa B; Nickel; Nitrogen Oxides; Non-alcoholic Fatty Liver Disease; Nucleosides; Nucleotidyltransferases; Nutritional Status; Obesity, Morbid; Ofloxacin; Oils, Volatile; Oligopeptides; Oncogene Protein v-akt; Optical Imaging; Organic Cation Transport Proteins; Organophosphonates; Osteoarthritis; Osteoarthritis, Hip; Osteoarthritis, Knee; Osteoblasts; Osteogenesis; Oxidation-Reduction; Oxidative Stress; Oxides; Oxygen Isotopes; Pancreas; Pancreaticoduodenectomy; Pandemics; Particle Size; Particulate Matter; Patient Acceptance of Health Care; Patient Compliance; PC-3 Cells; Peptide Fragments; Peptides; Periodontal Attachment Loss; Periodontal Index; Periodontal Pocket; Periodontitis; Peroxides; Peru; Pest Control, Biological; Phosphatidylinositol 3-Kinase; Phosphatidylinositol 3-Kinases; Phylogeny; Pilot Projects; Piperidines; Plant Bark; Plant Extracts; Plant Leaves; Plasmids; Platelet Function Tests; Pneumonia, Viral; Podocytes; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Polyethylene Terephthalates; Polymers; Polymorphism, Single Nucleotide; Porosity; Portugal; Positron-Emission Tomography; Postoperative Complications; Postural Balance; Potassium Channels, Inwardly Rectifying; Povidone; Powders; Precancerous Conditions; Precision Medicine; Predictive Value of Tests; Pregnancy; Prenatal Care; Prognosis; Promoter Regions, Genetic; Prospective Studies; Prostatectomy; Prostatic Neoplasms; Proteasome Inhibitors; Protective Agents; Protein Binding; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Protein Transport; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Psychiatric Nursing; PTEN Phosphohydrolase; Pulmonary Embolism; Pyrimethamine; Radiopharmaceuticals; Rats; Rats, Sprague-Dawley; Rats, Wistar; Reactive Oxygen Species; Receptor, ErbB-2; Receptor, IGF Type 1; Receptors, Estrogen; Receptors, G-Protein-Coupled; Recombinational DNA Repair; Recovery of Function; Regional Blood Flow; Renal Dialysis; Renin; Renin-Angiotensin System; Reperfusion Injury; Reproducibility of Results; Republic of Korea; Respiratory Distress Syndrome; Retrospective Studies; Rhodamines; Risk Assessment; Risk Factors; RNA, Long Noncoding; RNA, Messenger; Running; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Salinity; Salmeterol Xinafoate; Sarcoma; Seasons; Shoulder Injuries; Signal Transduction; Silicon Dioxide; Silver; Sirtuin 1; Sirtuins; Skull Fractures; Social Determinants of Health; Sodium; Sodium Fluoride; Sodium Potassium Chloride Symporter Inhibitors; Sodium-Glucose Transporter 2 Inhibitors; Soil; Soil Pollutants; Spain; Spectrophotometry; Spectroscopy, Fourier Transform Infrared; Staphylococcal Protein A; Staphylococcus aureus; Stem Cells; Stereoisomerism; Stomach Neoplasms; Streptomyces; Strontium; Structure-Activity Relationship; Students, Nursing; Substance-Related Disorders; Succinic Acid; Sulfur; Surface Properties; Survival Rate; Survivin; Symporters; T-Lymphocytes; Temozolomide; Tensile Strength; Thiazoles; Thiobacillus; Thiohydantoins; Thiourea; Thrombectomy; Time Factors; Titanium; Tobacco Mosaic Virus; Tobacco Use Disorder; Toll-Like Receptor 4; Toluene; Tomography, X-Ray Computed; TOR Serine-Threonine Kinases; Toxicity Tests, Acute; Toxicity Tests, Subacute; Transcriptional Activation; Treatment Outcome; Troponin I; Tumor Cells, Cultured; Tumor Escape; Tumor Hypoxia; Tumor Microenvironment; Tumor Necrosis Factor Inhibitors; Tumor Necrosis Factor-alpha; Tyrosine; Ubiquitin-Protein Ligases; Ubiquitination; Ultrasonic Waves; United Kingdom; United States; United States Department of Veterans Affairs; Up-Regulation; Urea; Uric Acid; Urinary Bladder Neoplasms; Urinary Bladder, Neurogenic; Urine; Urodynamics; User-Computer Interface; Vemurafenib; Verbenaceae; Veterans; Veterans Health; Viral Load; Virtual Reality; Vitiligo; Water Pollutants, Chemical; Wildfires; Wnt Signaling Pathway; Wound Healing; X-Ray Diffraction; Xenograft Model Antitumor Assays; Xylenes; Young Adult; Zinc; Zinc Oxide; Zinc Sulfate; Zoonoses | 2021 |
The concomitant use of cannabis and cocaine coexists with increased LPS levels and systemic inflammation in male drug users.
Illicit drug use can cause a variety of effects including alterations in the immune system. The aim of this study was to investigate the effects of illicit drugs on circulating lipopolysaccharide (LPS), systemic inflammation and oxidative stress markers in drug users. We evaluated the levels of soluble CD14 (sCD14), LPS, inflammatory (TNF-α and IL-6) and regulatory (IL-10) cytokines, as well as C-reactive protein (CRP), lipid peroxidation (TBARS) and total thiols in the peripheral blood of 81 men included in groups of cannabis (n = 21), cocaine (n = 12), cannabis-plus-cocaine users (n = 27), and non-drug users (n = 21). The use of cannabis plus cocaine leads to higher systemic levels of LPS, CRP, IL-6 and higher IL-6/IL-10 ratio, characterizing a proinflammatory profile. In contrast, a regulatory profile as viewed by lower systemic TNF-α and IL-6 levels and lower TNF-α/IL-10 ratio were observed in cannabis users compared to the control group. Moreover, cocaine users presented a lower content of non-enzymatic antioxidant thiol compared to control group, cannabis group and cannabis plus cocaine group. In conclusion, our results indicate that the use of cannabis contributes to an anti-inflammatory/or regulatory profile while the concomitant cannabis plus cocaine consumption coexists with increased circulating amounts of LPS and proinflammatory status. Topics: Adult; C-Reactive Protein; Cannabis; Cocaine; Cocaine-Related Disorders; Cytokines; Drug Users; Humans; Inflammation; Lipopolysaccharides; Male; Marijuana Abuse | 2021 |
Immunomodulatory and therapeutic effects of Hot-nature diet and co-supplemented hemp seed, evening primrose oils intervention in multiple sclerosis patients.
Multiple sclerosis (MS) is the most chronic and inflammatory disorder. Because of limited efficacy and adverse side effects, identifying novel therapeutic and protective agents is important. This study was aimed to assess the potential therapeutic effects of hemp seed and evening primrose oils as well as Hot-nature dietary intervention on RRMS patients.. In this double blind, randomized trial, 100 MS patients with EDSS<6 were allocated into 3 groups: "Group A" who received co-supplemented hemp seed and evening primrose oils with advised Hot-nature diet, "Group B" who received olive oil, "Group C" who received the co-supplemented oils. Mizadj, clinically EDSS and relapse rate as well as immunological factors (IL-4, IFN-γ and IL-17) were assessed at baseline and after 6 months.. Mean follow-up was 180±2.9 SD days (N=65, 23 M and 42 F aged 34.25±8.07 years with disease duration 6.80±4.33 years). There was no significant difference in studies parameters at baseline. After 6 months, significant improvements in Mizadj, EDSS and relapse rate were found in the groups A and C, while the group B showed a border significant decrease in relapse rate. Immunological parameters showed improvement in groups A and C, whereas there was worsening condition for group B after the intervention.. The co-supplemented hemp seed and evening primrose oils with Hot-nature diet have beneficial effects in improving of clinical score in RRMS patients which were confirmed by immunological findings. Topics: Adult; Cannabis; Cytokines; Diet; Double-Blind Method; Fatty Acids, Unsaturated; Female; Humans; Inflammation; Iran; Male; Medicine, Traditional; Metabolic Networks and Pathways; Multiple Sclerosis; Oenothera biennis; Phytotherapy; Plant Extracts; Plant Oils; Seeds | 2013 |
45 other study(ies) available for humulene and Inflammation
Article | Year |
---|---|
Tobacco, alcohol, cannabis, and illicit drug use and their association with CD4/CD8 cell count ratio in people with controlled HIV: a cross-sectional study (ANRS CO3 AQUIVIH-NA-QuAliV).
To evaluate drug use (alcohol, tobacco, cannabis and other drugs) and its association with mean CD4/CD8 T cell count ratio, a marker of chronic inflammation, in virally suppressed people living with HIV-1 (PLWH) in Nouvelle Aquitaine, France.. A multi-centric, cross-sectional analysis was conducted in 2018-19 in the QuAliV study-ANRS CO3 AQUIVIH-NA cohort. Tobacco, alcohol, cannabis, and other drug use (poppers, cocaine, amphetamines, synthetic cathinones, GHB/GBL) were self-reported. CD4 and CD8 T cell counts and viral load measures, ± 2 years of self-report, and other characteristics were abstracted from medical records. Univariable and multivariable linear regression models, adjusted for age, sex, HIV risk group, time since HIV diagnosis, and other drug use were fit for each drug and most recent CD4/CD8 ratio.. 660 PLWH, aged 54.7 ± 11.2, were included. 47.7% [315/660] had a CD4/CD8 ratio of < 1. Their mean CD4/CD8 ratio was 1.1 ± 0.6. 35% smoked; ~ 40% were considered to be hazardous drinkers or have alcohol use disorder; 19.9% used cannabis and 11.9% other drugs. Chemsex-associated drug users' CD4/CD8 ratio was on average 0.226 (95% confidence interval [95% CI] - 0.383, - 0.070) lower than that of non-users in univariable analysis (p = 0.005) and 0.165 lower [95% CI - 0.343, 0.012] in multivariable analysis (p = 0.068).. Mean differences in CD4/CD8 ratio were not significantly different in tobacco, alcohol and cannabis users compared to non-users. However, Chemsex-associated drug users may represent a population at risk of chronic inflammation, the specific determinants of which merit further investigation.. NCT03296202. Topics: Adult; Aged; Anti-HIV Agents; Cannabis; CD4 Lymphocyte Count; CD8-Positive T-Lymphocytes; Cross-Sectional Studies; Ethanol; HIV Infections; Humans; Illicit Drugs; Inflammation; Middle Aged; Nicotiana; Substance-Related Disorders; Viral Load | 2023 |
Non-Psychoactive Cannabinoid Modulation of Nociception and Inflammation Associated with a Rat Model of Pulpitis.
Topics: Animals; Cannabidiol; Cannabinoids; Cannabis; Facial Pain; Inflammation; Nociception; Pulpitis; Rats; Rats, Sprague-Dawley | 2023 |
The Anti-Inflammatory Effects of
Topics: Anti-Inflammatory Agents; Cannabidiol; Cannabinoid Receptor Agonists; Cannabinoids; Cannabis; Cytokines; Hallucinogens; Humans; Inflammation; Interleukin-6; Lipopolysaccharides; Macrophages; Plant Extracts | 2023 |
Epicutaneous Sensitization to the Phytocannabinoid β-Caryophyllene Induces Pruritic Inflammation.
In recent years, there has been increased accessibility to cannabis for recreational and medicinal use. Incidentally, there has been an increase in reports describing allergic reactions to cannabis including exacerbation of underlying asthma. Recently, multiple protein allergens were discovered in cannabis, yet these fail to explain allergic sensitization in many patients, particularly urticaria and angioedema. Cannabis has a rich chemical profile including cannabinoids and terpenes that possess immunomodulatory potential. We examined whether major cannabinoids of cannabis such as cannabidiol (CBD) and the bicyclic sesquiterpene beta-caryophyllene (β-CP) act as contact sensitizers. The repeated topical application of mice skin with β-CP at 10 mg/mL (50 µL) induced an itch response and dermatitis at 2 weeks in mice, which were sustained for the period of study. Histopathological analysis of skin tissues revealed significant edema and desquamation for β-CP at 10 mg/mL. For CBD and β-CP, we observed a dose-dependent increase in epidermal thickening with profound thickening observed for β-CP at 10 mg/mL. Significant trafficking of CD11b cells was observed in various compartments of the skin in response to treatment with β-CP in a concentration-dependent manner. Mast cell trafficking was restricted to β-CP (10 mg/mL). Mouse proteome profiler cytokine/chemokine array revealed upregulation of complement C5/5a (anaphylatoxin), soluble intracellular adhesion molecule-1 (sICAM-1) and IL-1 receptor antagonist (IL-1RA) in animals dosed with β-CP (10 mg/mL). Moreover, we observed a dose-dependent increase in serum IgE in animals dosed with β-CP. Treatment with β-CP (10 mg/mL) significantly reduced filaggrin expression, an indicator of barrier disruption. In contrast, treatment with CBD at all concentrations failed to evoke scratching and dermatitis in mice and did not result in increased serum IgE. Further, skin tissues were devoid of any remarkable features, although at 10 mg/mL CBD we did observe the accumulation of dermal CD11b cells in skin tissue sections. We also observed increased filaggrin staining in mice repeatedly dosed with CBD (10 mg/mL). Collectively, our studies indicate that repeated exposure to high concentrations of β-CP can induce dermatitis-like pathological outcomes in mice. Topics: Angioedema; Animals; Cannabidiol; Cannabinoid Receptor Agonists; Cannabis; Complement C5; Complement C5a; Dermatitis; Filaggrin Proteins; Hallucinogens; Humans; Immunoglobulin E; Inflammation; Mice; Pruritus | 2023 |
Immunomodulation by cannabidiol in bovine primary ruminal epithelial cells.
Ruminant livestock experience a number of challenges, including high concentrate diets, weaning and transport, which can increase their risk of disorders such as ruminal acidosis, and the associated inflammation of the ruminal epithelium. Cannabidiol (CBD), a phytochemical from hemp (Cannabis sativa), is a promising target as a therapy for gastrointestinal inflammation, and may be extremely valuable as either a treatment or prophylactic. However, the effects of CBD in the the ruminant gastrointestinal tract have not been explored, in part due to the restrictions on feeding hemp to livestock. Therefore, the objective of this study was to investigate the immunomodulatory properties of CBD using a model of inflammation in primary ruminal epithelial cells (REC). In addition, CBD dose was evaluated for possible cytotoxic effects.. Negative effects on cell viability were not observed when REC were exposed to 10 μM CBD. However, when the dose was increased to 50 μM for 24 h, there was a significant cytotoxic effect. When 10 μM CBD was added to culture media as treatment for inflammation induced with lipopolysaccharide (LPS), expression of genes encoding for pro-inflammatory cytokine IL1B was less compared to LPS exposure alone, and CBD resulted in a down-regulation of IL6. As a pre-treatment, prior to LPS exposure, REC had decreased expression of IL6 and CXCL10 while CBD was present in the media, but not when it was removed prior to addition of LPS.. Results suggest that CBD may reduce cytokine transcription both during LPS-induced inflammation and when used preventatively, although these effects were dependent on its continued presence in the culture media. Overall, these experiments provide evidence of an immunomodulatory effect by CBD during a pro-inflammatory response in primary REC in culture. Topics: Animals; Cannabidiol; Cannabis; Cattle; Cattle Diseases; Culture Media; Cytokines; Epithelial Cells; Inflammation; Interleukin-6; Lipopolysaccharides; Ruminants | 2023 |
Does body mass index explain the apparent anti-inflammatory effects of cannabis use? Results From a cohort study of sexual and gender minority youth.
Cannabis use has been linked to lower systemic inflammation, but the pathways connecting cannabis use and systemic inflammation are unclear. Here we investigate whether body mass index (BMI) accounts for the association between cannabis use and systemic inflammation in a cohort of sexual and gender minority youth assigned male at birth (n = 712).. In models including all covariates except BMI, greater cumulative CUDIT-R score was associated with lower CRP (β = -0.14; 95% CI: -0.22,-0.05) and lower interleukin-6 (β = -0.12; 95% CI: -0.21,-0.04). These associations were attenuated when BMI was added to the model. Mediation analyses revealed an indirect effect of cumulative CUDIT-R score on CRP (β = -0.08; 95% CI: -0.12,-0.05) and interleukin-6 (β = -0.08; 95% CI: -0.12,-0.05), mediated by BMI. Models using urine THC or self-reported frequency to operationalize cannabis use produced similar results. We found no clear evidence that HIV status moderates these associations.. These results suggest that BMI may partially account for the apparent anti-inflammatory effects of cannabis use. Research on the mechanisms linking cannabis use, adiposity, and inflammation may uncover promising intervention targets. Topics: Adolescent; Anti-Inflammatory Agents; Biomarkers; Body Mass Index; C-Reactive Protein; Cannabinoid Receptor Agonists; Cannabis; Cohort Studies; Dronabinol; Hallucinogens; HIV Infections; Humans; Infant, Newborn; Inflammation; Interleukin-6; Male; Sexual and Gender Minorities | 2022 |
Non-psychotropic Cannabis sativa L. phytocomplex modulates microglial inflammatory response through CB2 receptors-, endocannabinoids-, and NF-κB-mediated signaling.
Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and β-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases. Topics: Cannabidiol; Cannabis; Cytokines; Endocannabinoids; Inflammation; Lipopolysaccharides; Microglia; NF-kappa B; Receptor, Cannabinoid, CB2 | 2022 |
Anti-Inflammatory and Analgesic Properties of the Cannabis Terpene Myrcene in Rat Adjuvant Monoarthritis.
Topics: Acyclic Monoterpenes; Alkenes; Analgesics; Animals; Anti-Inflammatory Agents; Arthralgia; Arthritis; Cannabidiol; Cannabinoid Receptor Agonists; Cannabis; Chronic Pain; Hallucinogens; Inflammation; Male; Rats; Rats, Wistar; Terpenes | 2022 |
Analysis of Anti-Cancer and Anti-Inflammatory Properties of 25 High-THC Cannabis Extracts.
Topics: Anti-Inflammatory Agents; Camphor; Cannabidiol; Cannabinoid Receptor Agonists; Cannabinoids; Cannabis; Cyclooxygenase 2; Cymenes; Dronabinol; Eucalyptol; Hallucinogens; Humans; Inflammation; Interleukin-6; Plant Extracts; Terpenes; Tumor Necrosis Factor-alpha | 2022 |
Hemp seed significantly modulates the endocannabinoidome and produces beneficial metabolic effects with improved intestinal barrier function and decreased inflammation in mice under a high-fat, high-sucrose diet as compared with linseed.
Omega-3 fatty acids support cardiometabolic health and reduce chronic low-grade inflammation. These fatty acids may impart their health benefits partly by modulating the endocannabinoidome and the gut microbiome, both of which are key regulators of metabolism and the inflammatory response. Whole hemp seeds ( Topics: Animals; Cannabis; Diet, High-Fat; Fatty Acids; Fatty Acids, Omega-3; Flax; Glucose; Humans; Inflammation; Insulins; Mice; Obesity; Plasminogen Activator Inhibitor 1; Seeds; Sucrose; Triglycerides | 2022 |
Actions of Cannabis sativa L. fixed oil and nano-emulsion on venom-induced inflammation of Bothrops moojeni snake in rats.
Bothrops moojeni snake venom (VBm) has toxins that cause pronounced tissue damage and exacerbated inflammatory reaction. Cannabis sativa L. is a plant species that produces an oil (CSO) rich in unsaturated fatty acids. Nano-emulsions have several advantages, such as better stability and higher penetrating power in membranes. Therefore, this study evaluated the effect of a nano-emulsion based on this herbal derivative (NCS) against VBm-induced inflammation in Wistar rats.. The CSO and NCS were submitted to physicochemical characterization. The inflammatory process was induced by the VBm (0.10 mg/kg) as follows: rat paw edema, peritonitis, analysis of leukocyte infiltrate in gastrocnemius muscle of rats and formation of granulomatous tissue.. The results obtained in this study showed anti-inflammatory activity of the CSO which may be due to a high UFA content. The nanosizing, as evidenced by the incorporation of the CSO in the NCS improved the effect and opens the perspective for the obtainment of a nanomedicine in which a kinetic stable phytotherapic can be used at low doses. Topics: Animals; Anti-Inflammatory Agents; Bothrops; Cannabis; Crotalid Venoms; Edema; Emulsions; Inflammation; Male; Muscle, Skeletal; Nanostructures; Particle Size; Plant Oils; Rats; Rats, Wistar | 2021 |
Inflammatory biomarker relationships with helper T cell GPR15 expression and cannabis and tobacco smoking.
Smoking is associated with numerous inflammatory and autoimmune conditions. The goal of this study was to examine whether increased expression of G-protein-coupled receptor 15 (GPR15) on helper T cells in smokers could predispose to these conditions through its relationship with inflammatory biomarkers.. We used flow cytometric measurement of GPR15. Tobacco and cannabis smoking were strongly associated with increased GPR15 expression on helper T cells (p < 0.001), which was in turn was strongly associated with the ratio of pro-inflammatory to anti-inflammatory cytokines (p < 0.001). Mediation analyses indicated increased GPR15 expression accounted for roughly half of the relationship between smoking variables and pro-inflammatory to anti-inflammatory cytokine balance. CRP was not associated with cannabis or tobacco use or GPR15+ expression, but was associated with body mass index (p < 0.001). These relationships persisted after controlling for lifestyle and medical factors impacting immune function.. Increased expression of GPR15 by helper T cells in smokers may mediate some of the relationship between smoking and a pro-inflammatory cytokine milieu. Better understanding of this relationship may help uncover how smoking increases the risk of inflammatory diseases. Topics: Adult; Biomarkers; Cannabis; Female; Humans; Inflammation; Male; Receptors, G-Protein-Coupled; Receptors, Peptide; T-Lymphocytes, Helper-Inducer; Tobacco Smoking | 2021 |
In vivo and in vitro anti-inflammatory activity evaluation of Lebanese Cannabis sativa L. ssp. indica (Lam.).
Cannabis sativa L. is an aromatic annual herb belonging to the family Cannabaceae and it is widely distributed worldwide. Cultivation, selling, and consumption of cannabis and cannabis related products, regardless of its use, was prohibited in Lebanon until April 22, 2020. Nevertheless, cannabis oil has been traditionally used unlawfully for many years in Lebanon to treat diseases such as arthritis, diabetes, cancer and few neurological disorders.. The present study aims to evaluate the phytochemical and anti-inflammatory properties of a cannabis oil preparation that is analogous to the illegally used cannabis oil in Lebanon.. Dried Cannabis flowers were extracted with ethanol without any purification procedures to simulate the extracts sold by underground dealers in Lebanon. GC/MS was performed to identify chemical components of the cannabis oil extract (COE). In vivo anti-inflammatory effect of COE was evaluated by using carageenan- and formalin-induced paw edema rat models. TNF-α production were determined by using LPS-activated rat monocytes. Anti-inflammatory markers were quantified using Western blot.. Chemical analysis of COE revealed that cannabidiol (CBD; 59.1%) and tetrahydrocannabinol (THC; 20.2%) were found to be the most abundant cannabinoids.Various monoterpenes (α-Pinene, Camphene, β-Myrecene and D-Limonene) and sesquiterpenes (β-Caryophyllene, α-Bergamotene, α-Humelene, Humulene epoxide II, and Caryophyllene oxide) were identified in the extract. Results showed that COE markedly suppressed the release of TNF-α in LPS-stimulated rat monocytes. Western blot analysis revealed that COE significantly inhibited LPS-induced COX-2 and i-NOS protein expressions and blocked the phosphorylation of MAPKs, specifically that of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 MAPK. COE displayed a significant inhibition of paw edema in both rat models. Histopathological examination revealed that COE reduced inflammation and edema in chronic paw edema model.. The current findings demonstrate that COE possesses remarkable in vivo and in vitro anti-inflammatory activities which support the traditional use of the Lebanese cannabis oil extract in the treatment of various inflammatory diseases including arthritis. Topics: Animals; Anti-Inflammatory Agents; Cannabis; Carrageenan; Disease Models, Animal; Edema; Flowers; Formaldehyde; Inflammation; Lebanon; Lipopolysaccharides; Male; MAP Kinase Signaling System; Monocytes; Phytochemicals; Plant Extracts; Primary Cell Culture; Rats, Sprague-Dawley; Tumor Necrosis Factor-alpha | 2021 |
Fighting the storm: could novel anti-TNFα and anti-IL-6
The main aspects of severe COVID-19 disease pathogenesis include hyper-induction of proinflammatory cytokines, also known as 'cytokine storm', that precedes acute respiratory distress syndrome (ARDS) and often leads to death. COVID-19 patients often suffer from lung fibrosis, a serious and untreatable condition. There remains no effective treatment for these complications. Out of all cytokines, TNFα and IL-6 play crucial roles in cytokine storm pathogenesis and are likely responsible for the escalation in disease severity. These cytokines also partake in the molecular pathogenesis of fibrosis. Therefore, new approaches are urgently needed, that can efficiently and swiftly downregulate TNFα, IL-6, and the inflammatory cytokine cascade, in order to curb inflammation and prevent fibrosis, and lead to disease remission. Topics: Anti-Inflammatory Agents; Cannabinoids; Cannabis; Cell Line; COVID-19; Cytokine Release Syndrome; Fibroblasts; Humans; Inflammation; Interleukin-6; Plant Extracts; SARS-CoV-2; Skin; Tissue Culture Techniques; Tumor Necrosis Factor-alpha | 2021 |
Cannabis roots: Pharmacological and toxicological studies in mice.
There are many studies and therapeutic properties attributed to the flowers and leaves of the Cannabis species, but even with few pharmacological studies, Cannabis sativa L. (Cannabaceae) roots presents several therapeutic indications in folk medicine.. This study aimed to evaluate the anti-inflammatory and spasmolytic effects as well as the toxicological profile of the aqueous extract of Cannabis sativa roots (CsAqEx) in mice.. We assessed the anti-inflammatory effect with carrageenan-induced leukocyte migration assay, and carrageenan and histamine-induced paw edema methods; The spasmolytic effect was assessed through in vitro assays with isolated mice trachea. To assess motor coordination and mobility, mice went through the rotarod and open field tests, respectively. For the single-dose toxicity study, we administered CsAqEx at the dose of 1000 mg/kg by gavage. In a repeated dose toxicity study, animals received CsAqEx at doses of 25 mg or 100 mg/kg for 28 days.. The results suggest that the anti-inflammatory effect of CsAqEx is related to the reduction of vascular extravasation and migration of inflammatory cells, without effects on the central nervous system. Moreover, there was no spasmolytic effect on airway smooth muscle and no toxicity was observed on mice. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Behavior, Animal; Cannabis; Carrageenan; Edema; Histamine; Inflammation; Kidney; Liver; Mice; Muscle, Smooth; Open Field Test; Parasympatholytics; Plant Extracts; Plant Roots; Psychomotor Performance; Rotarod Performance Test; Stomach; Trachea | 2021 |
Self-Reported Cannabis Use and Markers of Inflammation in Men Who Have Sex With Men With and Without HIV.
Topics: Biomarkers; Cannabis; Cohort Studies; HIV Infections; Homosexuality, Male; Humans; Inflammation; Male; Prospective Studies; Self Report; Sexual and Gender Minorities | 2021 |
In recent decades, epidemiological, clinical, and experimental studies have demonstrated that a diet with antioxidant or anti-inflammatory function plays a central role in the prevention of atherosclerosis (AS). The purpose of this study was to explore the effects of Topics: Animals; Apolipoproteins E; Atherosclerosis; Cannabis; Female; Inflammation; Mice; Mice, Inbred C57BL; Mice, Knockout; Plant Oils | 2021 |
Investigation of antinociceptive, antipyretic, antiasthmatic, and spasmolytic activities of Brazilian Cannabis sativa L. roots in rodents.
Many studies are performed with the aerial parts of Cannabis sativa L. (Cannabaceae). However, roots remain poorly studied, despite citations in the scientific literature. The C. sativa roots are indicated for the treatment of pain, inflammation, fever, among other health problems.. This study aimed to evaluate the antinociceptive, antipyretic, antiasthmatic, and spasmolytic activities of C. sativa roots in experimental models using mice and rats.. The chemical composition of the aqueous extract of C. sativa roots (AECsR) was evaluated by LC-MS. The antinociceptive activity was assessed in mice by the induction of writhing with acetic acid, paw licking with formalin, and reactivity in the hot plate test. Fever was induced by the administration of a suspension of Saccharomyces cerevisiae in young rats. The asthmatic activity was performed with ovalbumin (OVA)-immunized mice with cellular and histological analysis. Finally, the spasmolytic activity was performed using mice isolated trachea. For in vivo studies, the doses were 12.5, 25, or 50 mg/kg whereas for in vitro, the concentration of AECsR was 729 μg/mL.. From the LC-MS data, we identified p-coumaroyltyramine, feruloyltyramine canabissativine in AECsR. The extract promoted a reduction of writhing in all tested doses (12.5, 25, or 50 mg/kg). Similarly, it reduced the pain in the formalin test at doses of 12.5 and 50 mg/kg (first phase) and 12.5 and 25 mg/kg (second phase). In the hot plate test, the doses of 12.5, 25, and 50 mg/kg promoted antinociceptive effect at different times, and the lowest dose maintained its action in the analyzes performed at 60, 90, and 120 min after administration. The anti-inflammatory activity of AECsR was observed in the mouse model of asthma, reducing the total leukocyte count in the bronchoalveolar fluid (BALF) at a dose of 25 mg/kg, as well as reducing eosinophilia in all tested doses (12.5, 25, and 50 mg/kg). Histological analysis of lungs stained with H&E and PAS showed a reduction in the number of inflammatory cells in the perivascular and peribronchial region, as well as reduced mucus production.. The results suggest that AECsR promotes pain control, either by a central or inflammatory mechanism, and has antiasthmatic activity. However, there was no antipyretic or spasmolytic effect. Topics: Analgesics; Animals; Anti-Asthmatic Agents; Antipyretics; Brazil; Cannabis; Disease Models, Animal; Dose-Response Relationship, Drug; Fever; Inflammation; Male; Mice; Pain; Parasympatholytics; Plant Extracts; Plant Roots; Rats; Rats, Wistar | 2021 |
Attenuation of Oxidative Stress and Inflammatory Response by Chronic Cannabidiol Administration Is Associated with Improved n-6/n-3 PUFA Ratio in the White and Red Skeletal Muscle in a Rat Model of High-Fat Diet-Induced Obesity.
The consumption of fatty acids has increased drastically, exceeding the nutritional requirements of an individual and leading to numerous metabolic disorders. Recent data indicate a growing interest in using cannabidiol (CBD) as an agent with beneficial effects in the treatment of obesity. Therefore, our aim was to investigate the influence of chronic CBD administration on the n-6/n-3 polyunsaturated fatty acids (PUFAs) ratio in different lipid fractions, inflammatory pathway and oxidative stress parameters in the white and red gastrocnemius muscle. All the designed experiments were performed on Wistar rats fed a high-fat diet (HFD) or a standard rodent diet for seven weeks and subsequently injected with CBD (10 mg/kg once daily for two weeks) or its vehicle. Lipid content and oxidative stress parameters were assessed using gas-liquid chromatography (GLC), colorimetric and/or immunoenzymatic methods, respectively. The total expression of proteins of an inflammatory pathway was measured by Western blotting. Our results revealed that fatty acids (FAs) oversupply is associated with an increasing oxidative stress and inflammatory response, which results in an excessive accumulation of FAs, especially of n-6 PUFAs, in skeletal muscles. We showed that CBD significantly improved the n-6/n-3 PUFA ratio and shifted the equilibrium towards anti-inflammatory n-3 PUFAs, particularly in the red gastrocnemius muscle. Additionally, CBD prevented generation of lipid peroxidation products and attenuated inflammatory response in both types of skeletal muscle. In summary, the results mentioned above indicate that CBD presents potential therapeutic properties with respect to the treatment of obesity and related disturbances. Topics: Animals; Cannabidiol; Cannabis; Diet, High-Fat; Fatty Acids; Fatty Acids, Omega-3; Fatty Acids, Omega-6; Fatty Acids, Unsaturated; Inflammation; Insulin Resistance; Lipid Metabolism; Lipid Peroxidation; Lipids; Male; Muscle, Skeletal; Obesity; Oxidative Stress; Rats; Rats, Wistar | 2021 |
Daily Cannabis Use is Associated With Lower CNS Inflammation in People With HIV.
Recent cannabis exposure has been associated with lower rates of neurocognitive impairment in people with HIV (PWH). Cannabis's anti-inflammatory properties may underlie this relationship by reducing chronic neuroinflammation in PWH. This study examined relations between cannabis use and inflammatory biomarkers in cerebrospinal fluid (CSF) and plasma, and cognitive correlates of these biomarkers within a community-based sample of PWH.. 263 individuals were categorized into four groups: HIV- non-cannabis users (n = 65), HIV+ non-cannabis users (n = 105), HIV+ moderate cannabis users (n = 62), and HIV+ daily cannabis users (n = 31). Differences in pro-inflammatory biomarkers (IL-6, MCP-1/CCL2, IP-10/CXCL10, sCD14, sTNFR-II, TNF-α) by study group were determined by Kruskal-Wallis tests. Multivariable linear regressions examined relationships between biomarkers and seven cognitive domains, adjusting for age, sex/gender, race, education, and current CD4 count.. HIV+ daily cannabis users showed lower MCP-1 and IP-10 levels in CSF compared to HIV+ non-cannabis users (p = .015; p = .039) and were similar to HIV- non-cannabis users. Plasma biomarkers showed no differences by cannabis use. Among PWH, lower CSF MCP-1 and lower CSF IP-10 were associated with better learning performance (all ps < .05).. Current daily cannabis use was associated with lower levels of pro-inflammatory chemokines implicated in HIV pathogenesis and these chemokines were linked to the cognitive domain of learning which is commonly impaired in PWH. Cannabinoid-related reductions of MCP-1 and IP-10, if confirmed, suggest a role for medicinal cannabis in the mitigation of persistent inflammation and cognitive impacts of HIV. Topics: Biomarkers; Cannabis; Cognition; HIV Infections; Humans; Inflammation | 2021 |
Benefits of cannabis use for metabolic disorders and survival in people living with HIV with or without hepatitis C co-infection.
Topics: Cannabinoids; Cannabis; Coinfection; Hepatitis C; HIV Infections; Humans; Inflammation; Metabolic Diseases | 2020 |
Reply to: Benefits of cannabis use for metabolic disorders and survival in people living with HIV with or without hepatitis C.
Topics: Cannabinoids; Cannabis; Hepatitis C; HIV Infections; Humans; Inflammation; Metabolic Diseases | 2020 |
Cannabis use is associated with monocyte activation (sCD163) in patients admitted for alcohol use disorder treatment.
The effect of concomitant cocaine and cannabis use on monocyte activation and inflammation in patients with alcohol use disorder (AUD) is unknown.. To analyze the impact of cocaine and cannabis use on levels of markers of monocyte activation (sCD163 and sCD14) and systemic inflammation (interleukin-6 [IL-6]) in AUD patients admitted for hospital treatment between 2013 and 2018. Clinical and laboratory parameters were obtained upon admission. IL-6, sCD163, and sCD14 were measured in frozen plasma samples. We performed logistic regression to detect associations between cocaine and cannabis use and markers of monocyte activation and inflammation in the highest quartile.. In this series of AUD patients the concomitant use of cannabis use was associated with sCD163 levels that were in the highest quartile, consistent with monocyte activation. Topics: Adult; Alcohol Drinking; Alcoholism; Biomarkers; Cannabis; Female; Humans; Inflammation; Interleukin-6; Lipopolysaccharide Receptors; Male; Marijuana Abuse; Middle Aged; Monocytes; Substance-Related Disorders | 2020 |
System, Method and Software for Calculation of a Cannabis Drug Efficiency Index for the Reduction of Inflammation.
There are many varieties of Topics: Biomarkers; Cannabinoids; Cannabis; Cells, Cultured; Drug Monitoring; Gene Expression Profiling; Humans; Inflammation; Intestinal Mucosa; Mouth Mucosa; Plant Extracts; Skin; Software; Transcriptome | 2020 |
Evaluation of the anti-inflammatory and urotoxicity ameliorative effects of γ-humulene containing active fraction of Emilia sonchifolia (L.) DC.
In folklore medicine, the plant Emilia sonchifolia, belonging to the family Asteraceae, is used for treating tumour and inflammation. In our previous studies, we have done a thorough phytochemical investigation of E. sonchifolia with a report on its potent antimetastatic activity. Further, we isolated and characterised its active fraction (AFES) containing the major compound γ-humulene with an evaluation of the antiangiogenic effect of AFES (5 mg/kg b.wt.). In the first part of the present study, AFES in different concentrations was used for the assessment of its possible anti-inflammatory effect employing three in vivo inflammatory models. Further using the most effective concentration of AFES 5 mg/kg b.wt, its effect on proinflammatory cytokine levels was recorded along with a confirmatory gene expression analysis. The results manifested with a reduction in the paw oedema significantly decreased levels of proinflammatory cytokines, C-reactive protein, nitric oxide and also there was an efficient downregulation of cyclooxygenase-2 and inducible nitric oxide. Urotoxicity is one of the major side effects of conventional chemotherapy. So in the second part of the study, we used AFES in combination with the conventional therapeutic agent cyclophosphamide in vivo in mice. The effect of AFES on urotoxicity was assessed from various biochemical parameters, cytokine markers and finally with a histopathology of the bladder. The current study revealed the protective effects of AFES, implicating reduced levels of urea nitrogen, by revamping of glutathione and marker cytokine levels towards positive amelioration. The results obtained altogether proved the safeguarding effect of AFES in murine experimental models. Topics: Animals; Anti-Inflammatory Agents; Asteraceae; C-Reactive Protein; Cell Line; Cytokines; Edema; Inflammation; Male; Medicine, Traditional; Mice; Mice, Inbred BALB C; Monocyclic Sesquiterpenes; Nitric Oxide; Plant Extracts; Sesquiterpenes | 2019 |
Working out with weed.
Topics: Adult; Arachidonic Acids; Athletic Performance; Cannabidiol; Cannabis; Doping in Sports; Dronabinol; Endocannabinoids; Exercise; Female; Humans; Inflammation; Male; Marijuana Use; Motivation; Performance-Enhancing Substances; Polyunsaturated Alkamides; Reproducibility of Results; Young Adult | 2019 |
Is marijuana use associated with lower inflammation? Results from waves III and IV of the national longitudinal study of adolescent to adult health.
Some research suggests that marijuana use facilitates an anti-inflammatory response, yet the relationship between marijuana use and inflammation, as measured by C-reactive protein (CRP), remains poorly understood. The present study examined the association between recency of marijuana use and serum C-reactive protein levels in a nationally representative sample of adults.. Data from Waves III and IV (N = 13,166) of the National Longitudinal Study of Adolescent to Adult Health was utilized. Past 30 day marijuana use was assessed in Waves III and IV, and past year marijuana use was also assessed at Wave IV. CRP was dichotomized with a cutpoint of 3 mg/L. Logistic regression analyses examined the association between marijuana use and CRP levels at Wave IV.. Past 30 day marijuana use was reported by 23.5% and 17.7% of participants at Wave III and Wave IV respectively, and 23.6% of participants reported past year marijuana use during Wave IV. Marijuana use was associated with lower CRP levels in bivariate analyses. However, these associations attenuated after adjusting for sociodemographic and health-related covariates.. Though marijuana and lower CRP levels were initially associated, the effect of marijuana use on CRP was later explained by gender, BMI, and anti-inflammatory medication use. This suggests that marijuana use does not confer an anti-inflammatory effect and recency of use is not relevant. Given expanding marijuana use legislation and discourse surrounding the consequences of marijuana for health, continued research is needed to elucidate the effect of marijuana on inflammation and subsequent risk of chronic disease. Topics: Adolescent; Adult; Anti-Inflammatory Agents; C-Reactive Protein; Cannabis; Chronic Disease; Female; Humans; Inflammation; Longitudinal Studies; Male; Marijuana Use; Medical Marijuana; Young Adult | 2019 |
Cannabis and Cannabinoids on Treatment of Inflammation: A Patent Review.
The inflammatory process is a physiological response to a vast number of harmful stimulus that takes place in order to restore homeostasis. Many drugs used in pharmacotherapy are effective to control inflammatory responses, however, there is a range of adverse effects attributed to steroidal and non-steroidal anti-inflammatory drugs (NSAIDs). In this sense, herbal medicine and derivatives have gained more attention because of their effectiveness and safety, showing the importance of medicinal plants, especially the Cannabis genus and the cannabinoid derivatives.. The aim of this prospection was to identify data related to patents involving Cannabis and cannabinoids for the treatment of inflammation.. To do so, a search for patents was conducted to evaluate the anti-inflammatory activity of Cannabis and cannabinoids. Four specialized databases for patent research were consulted using the terms "cannabis", "cannabidiol", "cannabinoids" and "THC" associated with "inflammation".. A total of 370 patents were found, of which 17 patents met the inclusion criteria. Although reports show synergistic effects of the plant components, patents involving Cannabis and cannabinoids focus on isolated substances (CBD e THC).. However, patents related to Cannabis and cannabinoids are promising for future use of the plant or its derivatives on the treatment of inflammation. Topics: Anti-Inflammatory Agents; Cannabinoids; Cannabis; Drug Discovery; Herbal Medicine; Humans; Inflammation; Patents as Topic | 2019 |
Cannabis sativa L. extract and cannabidiol inhibit in vitro mediators of skin inflammation and wound injury.
Skin inflammatory diseases result from complex events that include dysregulation and abnormal expression of inflammatory mediators or their receptors in skin cells. The present study investigates the potential effect of a Cannabis sativa L. ethanolic extract standardized in cannabidiol as antiinflammatory agent in the skin, unraveling the molecular mechanisms in human keratinocytes and fibroblasts. The extract inhibited the release of mediators of inflammation involved in wound healing and inflammatory processes occurring in the skin. The mode of action involved the impairment of the nuclear factor-kappa B (NF-κB) pathway since the extract counteracted the tumor necrosis factor-alpha-induced NF-κB-driven transcription in both skin cell lines. Cannabis extract and cannabidiol showed different effects on the release of interleukin-8 and vascular endothelial growth factor, which are both mediators whose genes are dependent on NF-κB. The effect of cannabidiol on the NF-κB pathway and metalloproteinase-9 (MMP-9) release paralleled the effect of the extract thus making cannabidiol the major contributor to the effect observed. Down-regulation of genes involved in wound healing and skin inflammation was at least in part due to the presence of cannabidiol. Our findings provide new insights into the potential effect of Cannabis extracts against inflammation-based skin diseases. Topics: Cannabidiol; Cannabis; Humans; Inflammation; Plant Extracts; Skin; Wound Healing | 2019 |
Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome.
Currently, a combination of marijuana cannabinoids including delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is used as a drug to treat muscle spasticity in patients with Multiple Sclerosis (MS). Because these cannabinoids can also suppress inflammation, it is unclear whether such patients benefit from suppression of neuroinflammation and if so, what is the mechanism through which cannabinoids act. In the currently study, we used a murine model of MS, experimental autoimmune encephalomyelitis (EAE), to study the role of gut microbiota in the attenuation of clinical signs of paralysis and inflammation caused by cannabinoids. THC + CBD treatment attenuated EAE and caused significant decrease in inflammatory cytokines such as IL-17 and IFN-γ while promoting the induction of anti-inflammatory cytokines such as IL-10 and TGF-β. Use of 16S rRNA sequencing on bacterial DNA extracted from the gut revealed that EAE mice showed high abundance of mucin degrading bacterial species, such as Akkermansia muciniphila (A. muc), which was significantly reduced after THC + CBD treatment. Fecal Material Transfer (FMT) experiments confirmed that THC + CBD-mediated changes in the microbiome play a critical role in attenuating EAE. In silico computational metabolomics revealed that LPS biosynthesis, a key component in gram-negative bacteria such as A. muc, was found to be elevated in EAE mice which was confirmed by demonstrating higher levels of LPS in the brain, while treatment with THC + CBD reversed this trend. EAE mice treated with THC + CBD also had significantly higher levels of short chain fatty acids such as butyric, isovaleric, and valeric acids compared to naïve or disease controls. Collectively, our data suggest that cannabinoids may attenuate EAE and suppress neuroinflammation by preventing microbial dysbiosis seen during EAE and promoting healthy gut microbiota. Topics: Animals; Cannabidiol; Cannabinoids; Cannabis; Cytokines; Disease Models, Animal; Dronabinol; Dysbiosis; Encephalomyelitis, Autoimmune, Experimental; Female; Gastrointestinal Microbiome; Inflammation; Interferon-gamma; Interleukin-17; Mice; Mice, Inbred C57BL; Multiple Sclerosis; RNA, Ribosomal, 16S | 2019 |
Selective activation of cannabinoid receptor-2 reduces neuroinflammation after traumatic brain injury via alternative macrophage polarization.
Inflammation is an important mediator of secondary neurological injury after traumatic brain injury (TBI). Endocannabinoids, endogenously produced arachidonate based lipids, have recently emerged as powerful anti-inflammatory compounds, yet the molecular and cellular mechanisms underlying these effects are poorly defined. Endocannabinoids are physiological ligands for two known cannabinoid receptors, CB1R and CB2R. In the present study, we hypothesized that selective activation of CB2R attenuates neuroinflammation and reduces neurovascular injury after TBI. Using a murine controlled cortical impact (CCI) model of TBI, we observed a dramatic upregulation of CB2R within infiltrating myeloid cells beginning at 72 h. Administration of the selective CB2R agonist, GP1a (1-5 mg/kg), attenuated pro-inflammatory M1 macrophage polarization, increased anti-inflammatory M2 polarization, reduced edema development, enhanced cerebral blood flow, and improved neurobehavioral outcomes after TBI. In contrast, the CB2R antagonist, AM630, worsened outcomes. Taken together, our findings support the development of selective CB2R agonists as a therapeutic strategy to improve TBI outcomes while avoiding the psychoactive effects of CB1R activation. Topics: Animals; Brain Injuries; Brain Injuries, Traumatic; Cannabinoids; Cannabis; Disease Models, Animal; Endocannabinoids; Indenes; Inflammation; Macrophages; Male; Mice; Mice, Inbred C57BL; Neuroimmunomodulation; Pyrazoles; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid | 2018 |
The ameliorative effect of hemp seed hexane extracts on the Propionibacterium acnes-induced inflammation and lipogenesis in sebocytes.
In this study, we investigated the anti-microbial, anti-inflammatory, and anti-lipogenic effects of hemp (Cannabis sativa L.) seed hexane extracts, focusing on the Propionibacterium acnes-triggered inflammation and lipogenesis. Hemp seed hexane extracts (HSHE) showed anti-microbial activity against P. acnes. The expression of iNOS, COX-2, and the subsequent production of nitric oxide and prostaglandin increased after infection of P. acnes in HaCaT cells, however, upon treating with HSHE, their expressions were reduced. P. acnes-induced expressions of IL-1β and IL-8 were also reduced. HSHE exerted anti-inflammatory effects by regulating NF-κB and MAPKs signaling and blunting the translocation of p-NF-κB to the nucleus in P. acnes-stimulated HaCaT cells. Moreover, P. acnes-induced phosphorylation of ERK and JNK, and their downstream targets c-Fos and c-Jun, was also inhibited by HSHE. In addition, the transactivation of AP-1 induced by P. acnes infection was also downregulated by HSHE. Notably, HSHE regulated inflammation and lipid biosynthesis via regulating AMPK and AKT/FoxO1 signaling in IGF-1-induced inflammation and lipogenesis of sebocytes. In addition, HSHE inhibited 5-lipoxygenase level and P. acnes-induced MMP-9 activity, and promoted collagen biosynthesis in vitro. Thus, HSHE could be utilized to treat acne vulgaris, through its anti-microbial, anti-inflammatory, anti-lipogenic, and collagen-promoting properties. Topics: Anti-Bacterial Agents; Anti-Inflammatory Agents; Arachidonate 5-Lipoxygenase; Cannabis; Cells, Cultured; Fibroblasts; Gram-Positive Bacterial Infections; Hexanes; Humans; Inflammation; Keratinocytes; Lipogenesis; Lipoxygenase Inhibitors; Plant Extracts; Propionibacterium acnes; Sebaceous Glands; Seeds | 2018 |
Marijuana smoke induces severe pulmonary hyperresponsiveness, inflammation, and emphysema in a predictive mouse model not via CB1 receptor activation.
Sporadic clinical reports suggested that marijuana smoking induces spontaneous pneumothorax, but no animal models were available to validate these observations and to study the underlying mechanisms. Therefore, we performed a systematic study in CD1 mice as a predictive animal model and assessed the pathophysiological alterations in response to 4-mo-long whole body marijuana smoke with integrative methodologies in comparison with tobacco smoke. Bronchial responsiveness was measured with unrestrained whole body plethysmography, cell profile in the bronchoalveolar lavage fluid with flow cytometry, myeloperoxidase activity with spectrophotometry, inflammatory cytokines with ELISA, and histopathological alterations with light microscopy. Daily marijuana inhalation evoked severe bronchial hyperreactivity after a week. Characteristic perivascular/peribronchial edema, atelectasis, apical emphysema, and neutrophil and macrophage infiltration developed after 1 mo of marijuana smoking; lymphocyte accumulation after 2 mo; macrophage-like giant cells, irregular or destroyed bronchial mucosa, goblet cell hyperplasia after 3 mo; and severe atelectasis, emphysema, obstructed or damaged bronchioles, and endothelial proliferation at 4 mo. Myeloperoxidase activity, inflammatory cell, and cytokine profile correlated with these changes. Airway hyperresponsiveness and inflammation were not altered in mice lacking the CB1 cannabinoid receptor. In comparison, tobacco smoke induced hyperresponsiveness after 2 mo and significantly later caused inflammatory cell infiltration/activation with only mild emphysema. We provide the first systematic and comparative experimental evidence that marijuana causes severe airway hyperresponsiveness, inflammation, tissue destruction, and emphysema, which are not mediated by the CB1 receptor. Topics: Animals; Bronchi; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Cannabis; Cytokines; Disease Models, Animal; Inflammation; Lipopolysaccharides; Macrophages; Male; Mice; Nicotiana; Pulmonary Emphysema; Receptor, Cannabinoid, CB1; Respiratory Hypersensitivity; Smoke | 2017 |
[MEDICAL CANNABIS].
The cannabis plant has been known to humanity for centuries as a remedy for pain, diarrhea and inflammation. Current research is inspecting the use of cannabis for many diseases, including multiple sclerosis, epilepsy, dystonia, and chronic pain. In inflammatory conditions cannabinoids improve pain in rheumatoid arthritis and:pain and diarrhea in Crohn's disease. Despite their therapeutic potential, cannabinoids are not free of side effects including psychosis, anxiety, paranoia, dependence and abuse. Controlled clinical studies investigating the therapeutic potential of cannabis are few and small, whereas pressure for expanding cannabis use is increasing. Currently, as long as cannabis is classified as an illicit drug and until further controlled studies are performed, the use of medical cannabis should be limited to patients who failed conventional better established treatment. Topics: Cannabis; Chronic Pain; Crohn Disease; Diarrhea; Drug and Narcotic Control; Epilepsy; Humans; Inappropriate Prescribing; Inflammation; Israel; Medical Marijuana; Multiple Sclerosis; Phytotherapy; Psychoses, Substance-Induced; Substance-Related Disorders | 2016 |
Marijuana Exposure May Affect Pregnancy Outcomes.
Topics: Cannabis; Endocannabinoids; Female; Humans; Infant, Newborn; Inflammation; Pregnancy; Pregnancy Outcome; Premature Birth | 2016 |
The effect of phytocannabinoids on airway hyper-responsiveness, airway inflammation, and cough.
Cannabis has been demonstrated to have bronchodilator, anti-inflammatory, and antitussive activity in the airways, but information on the active cannabinoids, their receptors, and the mechanisms for these effects is limited. We compared the effects of Δ(9)-tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, cannabidiolic acid, and tetrahydrocannabivarin on contractions of the guinea pig-isolated trachea and bronchoconstriction induced by nerve stimulation or methacholine in anesthetized guinea pigs following exposure to saline or the proinflammatory cytokine, tumor necrosis factor α (TNF-α). CP55940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol), a synthetic cannabinoid agonist, was also investigated in vitro. The cannabinoids were also evaluated on TNF-α- and lipopolysaccharide-induced leukocyte infiltration into the lungs and citric acid-induced cough responses in guinea pigs. TNF-α, but not saline, augmented tracheal contractility and bronchoconstriction induced by nerve stimulation, but not methacholine. Δ(9)-Tetrahydrocannabinol and CP55940 reduced TNF-α-enhanced nerve-evoked contractions in vitro to the magnitude of saline-incubated trachea. This effect was antagonized by the cannabinoid 1 (CB(1)) and CB(2) receptor antagonists AM251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-caroxamide] and JTE907 [N-(1,3-benzodioxol-5-ylmethyl)-1,2-dihydro-7-methoxy-2-oxo-8-(pentyloxy)-3-quinolinecarboxamide], respectively. Tetrahydrocannabivarin partially inhibited the TNF-α-enhanced nerve-evoked contractions, whereas the other cannabinoids were without effect. The effect of cannabidiol and Δ(9)-tetrahydrocannabinol together did not differ from that of the latter alone. Only Δ(9)-tetrahydrocannabinol inhibited TNF-α-enhanced vagal-induced bronchoconstriction, neutrophil recruitment to the airways, and citric acid-induced cough responses. TNF-α potentiated contractions of airway smooth muscle in response to nerve stimulation by enhancing postganglionic acetylcholine release. Δ(9)-Tetrahydrocannabinol and CP55940 inhibited the TNF-α-enhanced acetylcholine release, and hence contraction and bronchoconstriction, through activation of presynaptic CB(1) and CB(2) receptors. The other cannabinoids did not influence cholinergic transmission, and only Δ(9)-THC demonstrated effects on airway hyper-responsiveness, anti-inflammatory activity, and antitussive activity in the airways. Topics: Airway Resistance; Animals; Bronchoalveolar Lavage Fluid; Bronchoconstriction; Cannabinoid Receptor Agonists; Cannabinoids; Cannabis; Citric Acid; Cough; Cyclohexanols; Guinea Pigs; Inflammation; Isometric Contraction; Lipopolysaccharides; Male; Muscle, Smooth; Respiratory Hypersensitivity; Respiratory System; Trachea; Tumor Necrosis Factor-alpha | 2015 |
Medical marijuana: Showdown at the cannabis corral.
Topics: Acquired Immunodeficiency Syndrome; Biomedical Research; California; Canada; Cannabinoids; Cannabis; Clinical Trials as Topic; Crohn Disease; Drug and Narcotic Control; Female; Humans; Inflammation; Leadership; Male; Medical Marijuana; Multiple Sclerosis; Pain; Policy Making; Research Personnel; Seizures; Stress Disorders, Post-Traumatic | 2015 |
The oral administration of trans-caryophyllene attenuates acute and chronic pain in mice.
Trans-caryophyllene is a sesquiterpene present in many medicinal plants' essential oils, such as Ocimum gratissimum and Cannabis sativa. In this study, we evaluated the antinociceptive activity of trans-caryophyllene in murine models of acute and chronic pain and the involvement of trans-caryophyllene in the opioid and endocannabinoid systems. Acute pain was determined using the hot plate test (thermal nociception) and the formalin test (inflammatory pain). The chronic constriction injury (CCI) of the sciatic nerve induced hypernociception was measured by the hot plate and von Frey tests. To elucidate the mechanism of action, mice were pre-treated with naloxone or AM630 30 min before the trans-caryophyllene treatment. Afterwards, thermal nociception was evaluated. The levels of IL-1β were measured in CCI-mice by ELISA. Trans-caryophyllene administration significantly minimized the pain in both the acute and chronic pain models. The antinociceptive effect observed during the hot plate test was reversed by naloxone and AM630, indicating the participation of both the opioid and endocannabinoid system. Trans-caryophyllene treatment also decreased the IL-1β levels. These results demonstrate that trans-caryophyllene reduced both acute and chronic pain in mice, which may be mediated through the opioid and endocannabinoid systems. Topics: Acute Pain; Administration, Oral; Analgesics; Animals; Cannabis; Chronic Pain; Formaldehyde; Hot Temperature; Hyperalgesia; Inflammation; Interleukin-1beta; Male; Mice; Mice, Inbred C57BL; Naloxone; Ocimum; Oils, Volatile; Phytotherapy; Plant Extracts; Polycyclic Sesquiterpenes; Sesquiterpenes | 2014 |
Bioactive capacity, sensory properties, and nutritional analysis of a shelf stable protein-rich functional ingredient with concentrated fruit and vegetable phytoactives.
Well-known health-protective phytochemicals from muscadine grape and kale were stably complexed with food grade protein (soy or hemp protein isolates) to create biofortified food ingredients for use in a variety of convenient, portable food formulations. The bioactive (anti-inflammatory) potential, sensory attributes and proximates of the prepared formulations were evaluated in this study. Anti-inflammatory properties of the protein-phytoactive ingredient particles were contributed by the polyphenolic content (muscadine-protein) or the combination of polyphenol, carotenoid, and glucosinolate content (kale-protein aggregates). Phytoactive compounds from the fortified matrices suppressed at least two biomarkers of inflammation; most notable with the expression of chronic pro-inflammatory genes IL-6 and Mcp1. Sensory analysis suggested both sweet and savory functional food applications for the biofortified ingredients. Proximate analyses determined that fortification of the soy protein isolate (SPI) with muscadine or kale bioactives resulted in elevated dietary fibers, total carbohydrates, and free sugars, but did not increase calories/100 g dry matrix compared to unfortified SPI. Overall protein content in the aggregate matrices was about 37% less (muscadine-SPI, kale-SPI and kale- HP50) or 17.6% less (muscadine-HP50) on a weight basis, likely due to solubility of some proteins during preparation and partial displacement of some protein mass by the fruit and vegetable phytoactive constituents. Topics: Animals; Anti-Inflammatory Agents; Brassica; Cannabis; Carotenoids; Chemokine CCL2; Diet; Dietary Proteins; Fruit; Functional Food; Glucosinolates; Humans; Inflammation; Interleukin-6; Mice; Nutritive Value; Plant Preparations; Polyphenols; Soybean Proteins; Taste; Vegetables; Vitis | 2014 |
Potential use of Magnolia officinalis bark polyphenols in the treatment of cannabis dependence.
In recent years, epidemiological data confirm that cannabis-related emergencies, cannabis-use disorders and dependence are significantly increased. Cannabis is generally considered a little dangerous substances of abuse, however, chronic consumption has been associated to the development of mental disorders, cognitive deficits, chronic bronchitis, emphysema, increased risk of myocardial infarction in the hour after use, increased mortality after myocardial infarction, liver inflammation and steatosis in patients affected by hepatitis C. In this article we described the pharmacological characteristics of Magnolia officinalis bark active principles suggesting a potential application in the treatment of both cannabis dependence and cannabis-related disorders. Topics: Animals; Biphenyl Compounds; Cannabis; Humans; Inflammation; Lignans; Magnolia; Marijuana Abuse; Plant Bark; Plant Extracts; Polyphenols; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, G-Protein-Coupled | 2014 |
Gut feelings about the endocannabinoid system.
Stemming from the centuries-old and well known effects of Cannabis on intestinal motility and secretion, research on the role of the endocannabinoid system in gut function and dysfunction has received ever increasing attention since the discovery of the cannabinoid receptors and their endogenous ligands, the endocannabinoids. In this article, some of the most recent developments in this field are discussed, with particular emphasis on new data, most of which are published in Neurogastroenterology & Motility, on the potential tonic endocannabinoid control of intestinal motility, the function of cannabinoid type-1 (CB1) receptors in gastric function, visceral pain, inflammation and sepsis, the emerging role of cannabinoid type-2 (CB2) receptors in the gut, and the pharmacology of endocannabinoid-related molecules and plant cannabinoids not necessarily acting via cannabinoid CB1 and CB2 receptors. These novel data highlight the multi-faceted aspects of endocannabinoid function in the GI tract, support the feasibility of the future therapeutic exploitation of this signaling system for the treatment of GI disorders, and leave space for some intriguing new hypotheses on the role of endocannabinoids in the gut. Topics: Animals; Cannabinoid Receptor Modulators; Cannabis; Endocannabinoids; Gastrointestinal Diseases; Gastrointestinal Motility; Gastrointestinal Tract; Inflammation; Medicine, Traditional; Molecular Structure; Pain; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2011 |
Pharmacological evaluation of the natural constituent of Cannabis sativa, cannabichromene and its modulation by Δ(9)-tetrahydrocannabinol.
In contrast to the numerous reports on the pharmacological effects of Δ(9)-tetrahydrocannabinol (THC), the pharmacological activity of another substituent of Cannabis sativa, cannabichromene (CBC) remains comparatively unknown. In the present study, we investigated whether CBC elicits cannabinoid activity in the tetrad assay, which consists of the following four endpoints: hypomotility, antinociception, catalepsy, and hypothermia. Because cannabinoids are well documented to possess anti-inflammatory properties, we examined CBC, THC, and combination of both phytocannabinoids in the lipopolysaccharide (LPS) paw edema assay. CBC elicited activity in the tetrad that was not blocked by the CB(1) receptor antagonist, rimonabant. Moreover, a behaviorally inactive dose of THC augmented the effects of CBC in the tetrad that was associated with an increase in THC brain concentrations. Both CBC and THC elicited dose-dependent anti-inflammatory effects in the LPS-induced paw edema model. The CB(2) receptor, SR144528 blocked the anti-edematous actions of THC, but not those produced by CBC. Isobolographic analysis revealed that the anti-edematous effects of these cannabinoids in combination were additive. Although CBC produced pharmacological effects, unlike THC, its underlying mechanism of action did not involve CB(1) or CB(2) receptors. In addition, there was evidence of a possible pharmacokinetic component in which CBC dose-dependently increased THC brain levels following an i.v. injection of 0.3mg/kg THC. In conclusion, CBC produced a subset of behavioral activity in the tetrad assay and reduced LPS-induced paw edema through a noncannabinoid receptor mechanism of action. These effects were augmented when CBC and THC were co-administered. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Camphanes; Cannabinoids; Cannabis; Catalepsy; Dose-Response Relationship, Drug; Dronabinol; Hallucinogens; Hypothermia; Inflammation; Male; Mice; Mice, Inbred ICR; Motor Activity; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant | 2010 |
The non-psychoactive cannabis constituent cannabidiol is an orally effective therapeutic agent in rat chronic inflammatory and neuropathic pain.
Cannabidiol, the major psycho-inactive component of cannabis, has substantial anti-inflammatory and immunomodulatory effects. This study investigated its therapeutic potential on neuropathic (sciatic nerve chronic constriction) and inflammatory pain (complete Freund's adjuvant intraplantar injection) in rats. In both models, daily oral treatment with cannabidiol (2.5-20 mg/kg to neuropathic and 20 mg/kg to adjuvant-injected rats) from day 7 to day 14 after the injury, or intraplantar injection, reduced hyperalgesia to thermal and mechanical stimuli. In the neuropathic animals, the anti-hyperalgesic effect of cannabidiol (20 mg/kg) was prevented by the vanilloid antagonist capsazepine (10 mg/kg, i.p.), but not by cannabinoid receptor antagonists. Cannabidiol's activity was associated with a reduction in the content of several mediators, such as prostaglandin E(2) (PGE(2)), lipid peroxide and nitric oxide (NO), and in the over-activity of glutathione-related enzymes. Cannabidiol only reduced the over-expression of constitutive endothelial NO synthase (NOS), without significantly affecting the inducible form (iNOS) in inflamed paw tissues. Cannabidiol had no effect on neuronal and iNOS isoforms in injured sciatic nerve. The compound's efficacy on neuropathic pain was not accompanied by any reduction in nuclear factor-kappaB (NF-kappaB) activation and tumor necrosis factor alpha (TNFalpha) content. The results indicate a potential for therapeutic use of cannabidiol in chronic painful states. Topics: Administration, Oral; Animals; Cannabidiol; Cannabinoid Receptor Antagonists; Cannabis; Capsaicin; Chronic Disease; Dinoprostone; Freund's Adjuvant; Hyperalgesia; Inflammation; Lipid Peroxides; Male; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Pain; Pain Measurement; Rats; Rats, Wistar; Sciatic Neuropathy; Tumor Necrosis Factor-alpha | 2007 |
Talc granulomata in liver disease in narcotic addicts.
Topics: Adult; Amphetamine; Barbiturates; Biopsy; Cannabis; Chemical and Drug Induced Liver Injury; Granuloma; Hepatitis; Hepatitis B Antigens; Heroin Dependence; Humans; Inflammation; Liver Diseases; Liver Function Tests; Male; Pharmaceutical Vehicles; Substance-Related Disorders; Talc | 1974 |
Metastatic endophthalmitis associated with injection of addictive drugs.
Topics: Adult; Amphetamine; Aspergillosis; Cannabis; Eye Diseases; Heroin; Humans; Inflammation; Injections, Intravenous; Lysergic Acid Diethylamide; Male; Methylphenidate; Morphine Dependence; Mycoses; Substance-Related Disorders | 1971 |