hu-308 has been researched along with Disease-Models--Animal* in 18 studies
1 review(s) available for hu-308 and Disease-Models--Animal
Article | Year |
---|---|
Is there a rational basis for cannabinoids research and development in ocular pain therapy? A systematic review of preclinical evidence.
Purpose of the present systematic review is to investigate preclinical evidence in favor of the working hypothesis of efficacy of cannabinoids in ocular pain treatment.. Literature search includes the most relevant repositories for medical scientific literature from inception until November, 24 2021. Data collection and selection of retrieved records adhere to PRISMA criteria.. In agreement with a priori established protocol the search retrieved 2471 records leaving 479 results after duplicates removal. Eleven records result from title and abstract screening to meet the inclusion criteria; only 4 results are eligible for inclusion in the qualitative synthesis impeding meta-analysis. The qualitative analysis highlights the antinociceptive and anti-inflammatory efficacy of Δ8-tetrahydrocannabinol, cannabidiol and its derivative HU-308 and of new racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229. Moreover, CB2R agonists RO6871304 and RO6871085 and CB2R ligand HU910 provide evidence of anti-inflammatory efficacy. CB2 agonist HU308 reduces of 241% uveitis-induced leukocyte adhesion and changes lipidome profile. Methodological and design issues raise concern of risk of bias and the amount of studies is too small for generalization. Furthermore, the ocular pain model used can resemble only inflammatory but not neuropathic pain.. The role of the endocannabinoid system in ocular pain is underinvestigated, since only two studies assessing the effects of cannabinoid receptors modulators on pain behavior and other two on pain-related inflammatory processes are found. Preclinical studies investigating the efficacy of cannabinoids in ocular inflammatory and neuropathic pain models are needed to pave the way for clinical translation. Topics: Animals; Anti-Inflammatory Agents; Cannabidiol; Cannabinoid Receptor Agonists; Cannabinoids; Disease Models, Animal; Dronabinol; Drug Evaluation, Preclinical; Eye Pain; Leukocytes; Lipid Metabolism; Rodentia; Uveitis | 2022 |
17 other study(ies) available for hu-308 and Disease-Models--Animal
Article | Year |
---|---|
Carbon-silicon switch led to the discovery of novel synthetic cannabinoids with therapeutic effects in a mouse model of multiple sclerosis.
Cannabinoids are widely studied as therapeutic agents for the treatment of various diseases. Among them, THC and CBD are two important phytocannabinoids which have served as structural templates for the design of synthetic analogs. In this study, we designed and synthesized a variety of novel cannabinoids based on the structural backbones of THC and CBD using the carbon-silicon switch strategy. A dimethyl silyl group was introduced as the tail group and two series of novel compounds were designed and synthesized, which showed a wide range of binding affinity for CB1 and CB2 receptors. Among them, compound 15b was identified as a non-selective CB1 and CB2 agonist and 38b as a selective agonist for the CB2 receptor. Preliminary screening showed that both compounds have improved metabolic stability than their carbon analogs and good in vivo pharmacokinetic profiles. Furthermore, both 15b and 38b significantly alleviated the phenotype of experimental autoimmune encephalomyelitis (EAE) in mice. Topics: Animals; Cannabinoids; Carbon; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Discovery; Encephalomyelitis, Autoimmune, Experimental; Male; Mice; Mice, Inbred C57BL; Molecular Structure; Multiple Sclerosis; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Silicon; Structure-Activity Relationship | 2021 |
Cannabinoid receptor type 2 is upregulated in synovium following joint injury and mediates anti-inflammatory effects in synovial fibroblasts and macrophages.
Joint injury-induced perturbations to the endocannabinoid system (ECS), a regulator of both inflammation and nociception, remain largely uncharacterized. We employed a mouse model of ACL rupture to assess alterations to nociception, inflammation, and the ECS while using in vitro models to determine whether CB2 agonism can mitigate inflammatory signaling in macrophages and fibroblast-like synoviocytes (FLS).. Mice underwent noninvasive ACL rupture (ACLR) via tibial compression-based loading. Nociception was measured longitudinally using mechanical allodynia and knee hyperalgesia testing. Synovitis was assessed using histological scoring and histomorphometry. Gene and protein markers of inflammation were characterized in whole joints and synovium. Immunohistochemistry assessed injury-induced alterations to CB1+, CB2+, and F4/80+ cells in synovium. To assess whether CB2 agonism can inhibit pro-inflammatory macrophage polarization, murine bone marrow-derived macrophages (mBMDM) were stimulated with IL-1β or conditioned medium from IL-1β-treated FLS and treated with vehicle (DMSO), the CB2 agonist HU308, or cannabidiol (CBD). Macrophage polarization was assessed as the ratio of M1-associated (IL1b, MMP1b, and IL6) to M2-associated (IL10, IL4, and CD206) gene expression. Human FLS (hFLS) isolated from synovial tissue of OA patients were treated with vehicle (DMSO) or HU308 following TNF-α or IL-1β stimulation to assess inhibition of catabolic/inflammatory gene expression.. ACLR induces synovitis, progressively-worsening PTOA severity, and an immediate and sustained increase in both mechanical allodynia and knee hyperalgesia, which persist beyond the resolution of molecular inflammation. Enrichment of CB2, but not CB1, was observed in ACLR synovium at 3d, 14d, and 28d, and CB2 was found to be associated with F4/80 (+) cells, which are increased in number in ACLR synovium at all time points. The CB2 agonist HU308 strongly inhibited mBMDM M1-type polarization following stimulation with either IL-1β or conditioned medium from IL-1β-treated mFLS, which was characterized by reductions in Il1b, Mmp1b, and Il6 and increases in Cd206 gene expression. Cannabidiol similarly inhibited IL-1β-induced mBMDM M1 polarization via a reduction in Il1b and an increase in Cd206 and Il4 gene expression. Lastly, in OA hFLS, HU308 treatment inhibited IL-1β-induced CCL2, MMP1, MMP3, and IL6 expression and further inhibited TNF-α-induced CCL2, MMP1, and GMCSF expression, demonstrating human OA-relevant anti-inflammatory effects by targeting CB2.. Joint injury perturbs the intra-articular ECS, characterized by an increase in synovial F4/80(+) cells, which express CB2, but not CB1. Targeting CB2 in murine macrophages and human FLS induced potent anti-inflammatory and anti-catabolic effects, which indicates that the CB2 receptor plays a key role in regulating inflammatory signaling in the two primary effector cells in the synovium. The intraarticular ECS is therefore a potential therapeutic target for blocking pathological inflammation in future disease-modifying PTOA treatments. Topics: Animals; Anterior Cruciate Ligament Injuries; Cannabidiol; Cannabinoid Receptor Agonists; Cannabinoids; Disease Models, Animal; Fibroblasts; Interleukin-1beta; Macrophages; Mice, Inbred C57BL; Receptor, Cannabinoid, CB2; Synovial Membrane; Up-Regulation | 2021 |
Activation of CB2 receptor inhibits pyroptosis and subsequently ameliorates cecal ligation and puncture-induced sepsis.
Cannabinoid receptor 2 (CB2), whose activities are upregulated during sepsis, may be related to the regulation of inflammatory programmed cell death called pyroptosis. The aim of this study is to investigate the role of CB2 activation in attenuation of inflammation through inhibiting pyroptosis in cecal ligation puncture (CLP)-induced sepsis andlipopolysaccharide (LPS) + ATP-stimulated macrophages.. C57BL/6 mice were subjected to CLP procedure and treated with CB2 agonist HU308 and CB2 antagonist AM630. Lung tissues were collected for analyses of lung W/D ratio, inflammatory factors levels, and pyroptosis-related protein expression. Murine bone-marrow-derived macrophages (BMDM) were treated with LPS and ATP to construct a septic model in vitro in the presence of HU308 and AM630 for assessment of cell injury, cytokine levels and pyroptosis-related protein expression accordingly. To verify the relationship between CB2 receptors and pyroptosis in the process of inflammatory response, BMDM were transduced with CB2 receptors knockdown lentiviral vectors in the presence of HU308 and AM630 for assessment of pyroptosis-related protein expression.. CB2 activation ameliorated the release of inflammatory mediators. The results showed that CLP-induced pyroptosis was elevated, and CB2 agonist HU308 treatment inhibited the pyroptosis activity through a decrease of the protein levels of NLRP3 as well as caspase-1 and GSDMD activation. Similar results were obtained in BMDM after LPS and ATP treatment. Treatment with CB2 knockdown lentiviral particles prevented the HU308-induced decreases in cell pyroptosis, demonstrating that endogenous CB2 receptors are required for the cannabinoid-induced cell protection.. CB2 receptors activation plays a protective role in sepsis through inhibition of pyroptosis. The effect of CB2 receptors against pyroptosis depends on the existence of endogenous CB2 receptors. Topics: Adenosine Triphosphate; Animals; Cannabinoids; Cecum; Disease Models, Animal; Indoles; Inflammation; Ligation; Lipopolysaccharides; Lung; Macrophages; Male; Mice, Inbred C57BL; Primary Cell Culture; Punctures; Pyroptosis; Receptor, Cannabinoid, CB2; Sepsis | 2021 |
Targeting the cannabinoid receptor CB2 in a mouse model of l-dopa induced dyskinesia.
L-dopa induced dyskinesia (LID) is a debilitating side-effect of the primary treatment used in Parkinson's disease (PD), l-dopa. Here we investigate the effect of HU-308, a cannabinoid CB2 receptor agonist, on LIDs. Utilizing a mouse model of PD and LIDs, induced by 6-OHDA and subsequent l-dopa treatment, we show that HU-308 reduced LIDs as effectively as amantadine, the current frontline treatment. Furthermore, treatment with HU-308 plus amantadine resulted in a greater anti-dyskinetic effect than maximally achieved with HU-308 alone, potentially suggesting a synergistic effect of these two treatments. Lastly, we demonstrated that treatment with HU-308 and amantadine either alone, or in combination, decreased striatal neuroinflammation, a mechanism which has been suggested to contribute to LIDs. Taken together, our results suggest pharmacological treatments with CB2 agonists merit further investigation as therapies for LIDs in PD patients. Furthermore, since CB2 receptors are thought to be primarily expressed on, and signal through, glia, our data provide weight to suggestion that neuroinflammation, or more specifically, altered glial function, plays a role in development of LIDs. Topics: Amantadine; Animals; Antiparkinson Agents; Camphanes; Cannabinoid Receptor Agonists; Cannabinoids; Disease Models, Animal; Dopamine Agents; Dyskinesia, Drug-Induced; Levodopa; Male; Mice; Mice, Inbred C57BL; Parkinsonian Disorders; Pyrazoles; Receptor, Cannabinoid, CB2 | 2020 |
Cannabinoid receptors and the proconvulsant effect of toxoplasmosis in mice.
Toxoplasmosis is an infectious disease caused by the intracellular parasite Toxoplasma gondii that harms the brain and increases the risk of epilepsy acquisition. It is well known that cannabinoid (CB) signaling is activated following brain insults and protects the neurons from excitotoxicity and inflammation. We examined the role of CB neurotransmission in the proconvulsant effect of Toxoplasmosis in mice. Toxoplasmosis was established in mice by intraperitoneal injection of T. gondii cysts. The mice with acute and/or chronic Toxoplasma infection were pretreated (through intracerebroventricular injection) with CB1 and CB2 receptor agonists (ACEA and HU308) and antagonists (AM251 and AM630), as well as JZL184 (the irreversible inhibitor of mono acyl glycerol lipase, enzyme degrading the endogenous cannabinoid 2-Acyl glycerol). The seizure threshold was then measured by tail vein infusion of pentylenetetrazole. In healthy uninfected mice JZL184, ACEA, and AM630 increased the seizure threshold in a dose-dependent manner, whereas AM251 and HU308 showed dose-dependent proconvulsant effect. Mice with acute and/or chronic infection had a substantial lower seizure threshold than the uninfected mice. JZL 184, ACEA and AM630 inhibited proconvulsant effect of Toxoplasmosis, while AM251 and HU308 intensified proconvulsant effect of Toxoplasmosis. CB receptors play a role in proconvulsant effect of Toxoplasmosis in mice. Topics: Animals; Benzodioxoles; Cannabinoids; Disease Models, Animal; Indoles; Male; Mice; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Toxoplasma; Toxoplasmosis | 2020 |
Targeting glial cannabinoid CB
Cannabinoid CB. We treated TDP-43 (A315T) transgenic mice with the non-selective agonist WIN55,212-2, alone or combined with selective CB. WIN55,212-2 had modest beneficial effects in the rotarod test, Nissl staining of motor neurons, and GFAP and Iba-1 immunostainings in the spinal cord, which were mediated in part by CB. Our study shows an important role for glial CB Topics: Amyotrophic Lateral Sclerosis; Animals; Benzoxazines; Cannabinoid Receptor Agonists; Cannabinoids; Disease Models, Animal; DNA-Binding Proteins; Mice, Transgenic; Microglia; Morpholines; Motor Activity; Motor Neurons; Naphthalenes; Receptor, Cannabinoid, CB2; Rotarod Performance Test | 2019 |
Cannabinoid 2 receptor is a novel anti-inflammatory target in experimental proliferative vitreoretinopathy.
Proliferative vitreoretinopathy (PVR) can develop after ocular trauma or inflammation and is a common complication of surgery to correct retinal detachment. Currently, there are no pharmacological treatments for PVR. Cannabinoids acting at cannabinoid 2 receptor (CB2R) can decrease inflammation and fibrosis. The objective of this study was to examine the anti-inflammatory actions of CB2R as a candidate novel therapeutic target in experimental PVR. PVR was induced by intravitreal injection of dispase in wild-type (WT) and CB2R genetic knockout (CB2R Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Cannabinoid Receptor Modulators; Cannabinoids; Disease Models, Animal; Dose-Response Relationship, Drug; Endopeptidases; Endothelial Cells; Indoles; Leukocytes; Lipopolysaccharides; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Microglia; Receptor, Cannabinoid, CB2; Retina; Vitreoretinopathy, Proliferative | 2017 |
Activation of cannabinoid receptor 2 attenuates synovitis and joint distruction in collagen-induced arthritis.
Recent studies have suggested immunomodulatory and anti-inflammatory effects of cannabinoid receptor 2 (CB2R) activation, which is devoid of psychoactivity. We have demonstrated the expression of CB2R in synovial tissue from patients with rheumatoid arthritis (RA), and its specific activation shows inhibitory effects on fibroblast-like synoviocytes. However, it is still unclear whether selective activation of CB2R inhibits joint inflammation or protects joint damage in RA.. A murine model of collagen-induced arthritis (CIA) was used to evaluate the therapeutic efficacy of HU-308, a selective CB2R agonist. The disease severity was evaluated by semi-quantitative scoring of joint swelling, histological assessment of joint inflammation and structure, and radiographic assessment of joint destruction by using digital plain radiographs and micro-CT scans. The concentrations of various isotypes of anti-collagen II antibodies in sera and the levels of cytokines in culture supernatants were determined by ELISA.. Compared with vehicle treatment, protective treatment with intraperitoneal injection of HU-308 (0.3-1.0 mg/kg) failed to decrease the incidence of the development of CIA, but it effectively suppressed the severity of the disease. In CIA mice, treatment with HU-308 significantly decreased joint swelling, synovial inflammation, and joint destruction, as well as serum levels of anti-collagen II antibodies. In vitro, HU-308 (1-10 μM) significantly suppressed the production of proinflammatory cytokines IL-6 and TNF-α from lipopolysaccharide-stimulated murine peritoneal macrophages with intact CB2R in dose-dependent manners. HU-308 failed to elicit any inhibitory effect of on lipopolysaccharide-stimulated macrophages from CB2R-knockout mice.. Activation of CB2R by HU-308 has therapeutic potential for RA to suppress synovitis and alleviate joint destruction by inhibiting the production of autoantibodies and proinflammatory cytokines. Topics: Animals; Arthritis, Experimental; Autoantibodies; Cannabinoids; Collagen; Complement C2; Disease Models, Animal; Interleukin-6; Joints; Macrophages; Male; Mice; Mice, Knockout; Neutrophil Infiltration; Receptor, Cannabinoid, CB2; Severity of Illness Index; Synovitis; Tumor Necrosis Factor-alpha; X-Ray Microtomography | 2015 |
The cytokine and endocannabinoid systems are co-regulated by NF-κB p65/RelA in cell culture and transgenic mouse models of Huntington's disease and in striatal tissue from Huntington's disease patients.
Transcriptional dysregulation is a major pathological feature of Huntington's disease (HD). The goal of this study was to understand how p65/RelA co-regulated genes, specifically those of the cytokine and endocannabinoid systems, were affected in HD. p65/RelA levels were lower in human HD tissue and R6/2 HD mice, as were the levels of the type 1 cannabinoid receptor (CB1), IL-1β, IL-8, CCL5, GM-CSF, MIP-1β, and TNFα, all of which may be regulated by p65/RelA. Activation of p65/RelA restored CB1 and CCL5 expression in STHdh cell models of HD. Therefore, p65/RelA activation may normalize the expression of some genes in HD. Topics: Adult; Age Factors; Aged; Amidohydrolases; Animals; Arachidonic Acids; Cannabinoids; Cells, Cultured; Corpus Striatum; Cytokines; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Female; Gene Expression Regulation; Humans; Huntingtin Protein; Huntington Disease; Indoles; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Middle Aged; Nerve Tissue Proteins; Neurons; NF-kappa B; Nuclear Proteins; Receptor, Cannabinoid, CB1; Transcription Factor RelA; Trinucleotide Repeats; Young Adult | 2014 |
Activating cannabinoid receptor 2 alleviates pathogenesis of experimental autoimmune encephalomyelitis via activation of autophagy and inhibiting NLRP3 inflammasome.
Activation of cannabinoid receptor 2 (CB2R) has been reported to ameliorate the pathogenesis of experimental autoimmune encephalomyelitis (EAE). In this study, we examined whether autophagy is involved in the beneficial effect of CB2R on EAE and explored the mechanism with a focus on inflammasome activation.. EAE severity was analyzed with clinical score and histological score stained by hematoxylin and eosin or luxol fast blue in spinal cord. Immunoblot analysis was conducted to detect proteins of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome-related caspase-1 (Casp-1) and the maturation of interleukin (IL)-1β as well as autophagy-related light chain 3 (LC3), and Beciln 1 both in vivo and in vitro. Reverse transcription and real-time PCR were used to detect mRNA of NLRP3, IL-1β and Casp-1. Autophagy-related gene 5 (ATG5)-specific siRNA was transiently transfected in BV2 microglia, and immunofluorescence staining was carried out to detect the expression of NLRP3, caspase recruitment domain (ASC), and pro-caspase-1.. The current data indicated that deleting CB2R decreased the expression of LC3-II/LC3-I ratio, Beclin 1 and increased caspase-1 activation and IL-1β production in the spinal cord of EAE mice, whereas activation of CB2R with a specific agonist HU-308 induced inverse effects. Further study indicated that HU-308 could promote autophagy and inhibit expression and activation of NLRP3 inflammasome in BV2 microglia. Blocking autophagy by ATG5-specific siRNA dismissed the effort of CB2R in mediating NLRP3 inflammasome in vitro.. Collectively, our results demonstrated for the first time that CB2R plays a protective role in EAE through promoting autophagy and inhibiting NLRP3 inflammasome activation. Topics: Animals; Autophagy; Autophagy-Related Protein 5; Cannabinoid Receptor Agonists; Cannabinoids; Carrier Proteins; Caspase 1; Cells, Cultured; Disease Models, Animal; Encephalomyelitis, Autoimmune, Experimental; Gene Expression Regulation; Inflammation; Interleukin-1beta; Lipopolysaccharides; Mice; Mice, Inbred C57BL; Mice, Knockout; Microglia; Microtubule-Associated Proteins; NLR Family, Pyrin Domain-Containing 3 Protein; Receptor, Cannabinoid, CB2; Spinal Cord | 2014 |
Cannabinoid-2 receptor activation protects against infarct and ischemia-reperfusion heart injury.
Endocannabinoid system is reported to be activated during myocardial ischemia-reperfusion (IR) injury and protects against heart injury. We, therefore, observed changes in endocannabinoids levels during acute myocardial infarction (AMI) and myocardial IR injury and evaluated the role of cannabinoid-2 (CB2) receptor in infarct and IR heart injury. In contrast to 16 control patients with normal coronary artery angiogram, the endocannabinoid 2-arachidonoylglycerol level in the infarct-side coronary artery of 23 AMI patients increased significantly, with increased reactive oxygen species and tumor necrosis factor-α levels in both infarct-side coronary artery and radial artery. Then, 35 C57BL/6J mice were made into SHAM, AMI, or IR models. AMI and IR groups were treated with CB2-selective agonist HU308 ((+)-(1aH,3H,5aH)-4-[2,6-dimethoxy-4-(1,1-dimethylheptyl)phenyl]-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carbinol), with or without CB2-selective antagonist AM630 [6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone through intraperitoneal injection. Compared with the SHAM, expressions of cannabinoid CB1/CB2 receptor proteins in AMI/IR animals were upregulated; production of 2-arachidonoylglycerol and anandamide and release of reactive oxygen species and tumor necrosis factor-α also increased. HU308 significantly decreased the infarct size and the levels of reactive oxygen species and tumor necrosis factor-α in AMI/IR animals. However, these effects were blocked by AM630. In conclusion, the endocannabinoid system was activated during AMI and IR, and CB2 receptor activation produces a protective role, thus offering a novel pharmaceutical target for treating these diseases. Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Modulators; Cannabinoids; Case-Control Studies; Coronary Angiography; Coronary Vessels; Disease Models, Animal; Endocannabinoids; Glycerides; Humans; Indoles; Injections, Intraperitoneal; Male; Mice; Mice, Inbred C57BL; Myocardial Infarction; Myocardial Reperfusion Injury; Radial Artery; Reactive Oxygen Species; Receptor, Cannabinoid, CB2; Tumor Necrosis Factor-alpha | 2012 |
Symptom-relieving and neuroprotective effects of the phytocannabinoid Δ⁹-THCV in animal models of Parkinson's disease.
Previous findings have indicated that a cannabinoid, such as Δ(9)-THCV, which has antioxidant properties and the ability to activate CB(2) receptors but to block CB(1) , might be a promising therapy for alleviating symptoms and delaying neurodegeneration in Parkinson's disease (PD).. The ability of Δ(9)-THCV to reduce motor inhibition and provide neuroprotection was investigated in rats lesioned with 6-hydroxydopamine and in mice lesioned with lipopolysaccharide (LPS).. Acute administration of Δ(9)-THCV attenuated the motor inhibition caused by 6-hydroxydopamine, presumably through changes in glutamatergic transmission. Moreover, chronic administration of Δ(9)-THCV attenuated the loss of tyrosine hydroxylase-positive neurones caused by 6-hydroxydopamine in the substantia nigra, through an effect related to its antioxidant properties (it was reproduced by cannabidiol -enriched botanical extract). In addition, CB(2) receptor-deficient mice responded to 6-hydroxydopamine in a similar manner to wild-type animals, and CB(2) receptors were poorly up-regulated in the rat substantia nigra in response to 6-hydroxydopamine. By contrast, the substantia nigra of mice that had been injected with LPS exhibited a greater up-regulation of CB(2) receptors. In these animals, Δ(9)-THCV also caused preservation of tyrosine hydroxylase-positive neurones. This effect probably involved CB(2) receptors as it was also elicited by the selective CB(2) receptor agonist, HU-308, and CB(2) receptor-deficient mice were more vulnerable to LPS lesions. CONCLUSIONS AND IMPLICATIONS Given its antioxidant properties and its ability to activate CB(2) but to block CB(1) receptors, Δ(9)-THCV has a promising pharmacological profile for delaying disease progression in PD and also for ameliorating parkinsonian symptoms. Topics: Animals; Antioxidants; Cannabinoids; Cyclohexanols; Disease Models, Animal; Dopamine; Dronabinol; Glutamic Acid; Lipopolysaccharides; Male; Mice; Motor Activity; Neurons; Neuroprotective Agents; Oxidopamine; Parkinson Disease; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Substantia Nigra; Tyrosine 3-Monooxygenase | 2011 |
Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease.
Cannabinoid agonists might serve as neuroprotective agents in neurodegenerative disorders. Here, we examined this hypothesis in a rat model of Huntington's disease (HD) generated by intrastriatal injection of the mitochondrial complex II inhibitor malonate. Our results showed that only compounds able to activate CB2 receptors were capable of protecting striatal projection neurons from malonate-induced death. That CB2 receptor agonists are neuroprotective was confirmed by using the selective CB2 receptor antagonist, SR144528, and by the observation that mice deficient in CB2 receptor were more sensitive to malonate than wild-type animals. CB2 receptors are scarce in the striatum in healthy conditions, but they are markedly upregulated after the lesion with malonate. Studies of double immunostaining revealed a significant presence of CB2 receptors in cells labeled with the marker of reactive microglia OX-42, and also in cells labeled with GFAP (a marker of astrocytes). We further showed that the activation of CB2 receptors significantly reduced the levels of tumor necrosis factor-alpha (TNF-alpha) that had been increased by the lesion with malonate. In summary, our results demonstrate that stimulation of CB2 receptors protect the striatum against malonate toxicity, likely through a mechanism involving glial cells, in particular reactive microglial cells in which CB2 receptors would be upregulated in response to the lesion. Activation of these receptors would reduce the generation of proinflammatory molecules like TNF-alpha. Altogether, our results support the hypothesis that CB2 receptors could constitute a therapeutic target to slowdown neurodegeneration in HD. Topics: Animals; Arachidonic Acids; Camphanes; Cannabinoids; Cell Death; Central Nervous System Agents; Corpus Striatum; Disease Models, Animal; Huntington Disease; Male; Malonates; Mice; Mice, Knockout; Neuroglia; Neurons; Neuroprotective Agents; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Tumor Necrosis Factor-alpha | 2009 |
Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: importance of antioxidant and cannabinoid receptor-independent properties.
We have recently demonstrated that two plant-derived cannabinoids, Delta9-tetrahydrocannabinol and cannabidiol (CBD), are neuroprotective in an animal model of Parkinson's disease (PD), presumably because of their antioxidant properties. To further explore this issue, we examined the neuroprotective effects of a series of cannabinoid-based compounds, with more selectivity for different elements of the cannabinoid signalling system, in rats with unilateral lesions of nigrostriatal dopaminergic neurons caused by local application of 6-hydroxydopamine. We used the CB1 receptor agonist arachidonyl-2-chloroethylamide (ACEA), the CB2 receptor agonist HU-308, the non-selective agonist WIN55,212-2, and the inhibitors of the endocannabinoid inactivation AM404 and UCM707, all of them administered i.p. Daily administration of ACEA or WIN55,212-2 did not reverse 6-hydroxydopamine-induced dopamine (DA) depletion in the lesioned side, whereas HU-308 produced a small recovery that supports a possible involvement of CB2 but not CB1 receptors. AM404 produced a marked recovery of 6-hydroxydopamine-induced DA depletion and tyrosine hydroxylase deficit in the lesioned side. Possibly, this is caused by the antioxidant properties of AM404, which are derived from the presence of a phenolic group in its structure, rather than by the capability of AM404 to block the endocannabinoid transporter, because UCM707, another transporter inhibitor devoid of antioxidant properties, did not produce the same effect. None of these effects were observed in non-lesioned contralateral structures. We also examined the timing for the effect of CBD to provide neuroprotection in this rat model of PD. We found that CBD, as expected, was able to recover 6-hydroxydopamine-induced DA depletion when it was administered immediately after the lesion, but it failed to do that when the treatment started 1 week later. In addition, the effect of CBD implied an upregulation of mRNA levels for Cu,Zn-superoxide dismutase, a key enzyme in endogenous defenses against oxidative stress. In summary, our results indicate that those cannabinoids having antioxidant cannabinoid receptor-independent properties provide neuroprotection against the progressive degeneration of nigrostriatal dopaminergic neurons occurring in PD. In addition, the activation of CB2 (but not CB1) receptors, or other additional mechanisms, might also contribute to some extent to the potential of cannabinoids in this disease. Topics: Animals; Antioxidants; Arachidonic Acids; Benzoxazines; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Cannabinoids; Disease Models, Animal; Dopamine; Furans; Male; Morpholines; Naphthalenes; Nerve Degeneration; Neuroprotective Agents; Organ Culture Techniques; Oxidative Stress; Oxidopamine; Parkinsonian Disorders; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Superoxide Dismutase; Sympatholytics | 2007 |
Attenuation of allergic contact dermatitis through the endocannabinoid system.
Allergic contact dermatitis affects about 5% of men and 11% of women in industrialized countries and is one of the leading causes for occupational diseases. In an animal model for cutaneous contact hypersensitivity, we show that mice lacking both known cannabinoid receptors display exacerbated allergic inflammation. In contrast, fatty acid amide hydrolase-deficient mice, which have increased levels of the endocannabinoid anandamide, displayed reduced allergic responses in the skin. Cannabinoid receptor antagonists exacerbated allergic inflammation, whereas receptor agonists attenuated inflammation. These results demonstrate a protective role of the endocannabinoid system in contact allergy in the skin and suggest a target for therapeutic intervention. Topics: Animals; Arachidonic Acids; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Chemokines; Dermatitis, Allergic Contact; Dinitrofluorobenzene; Disease Models, Animal; Down-Regulation; Dronabinol; Endocannabinoids; Female; Glycerides; Mice; Mice, Inbred C57BL; Mice, Knockout; Oligonucleotide Array Sequence Analysis; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Skin; Up-Regulation | 2007 |
CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion.
Targeting cannabinoid-2 (CB(2)) receptors with selective agonists may represent a novel therapeutic avenue in various inflammatory diseases, but the mechanisms by which CB(2) activation exerts its anti-inflammatory effects and the cellular targets are elusive. Here, we investigated the effects of CB(2)-receptor activation on TNF-alpha-induced signal transduction in human coronary artery endothelial cells in vitro and on endotoxin-induced vascular inflammatory response in vivo. TNF-alpha induced NF-kappaB and RhoA activation and upregulation of adhesion molecules ICAM-1 and VCAM-1, increased expression of monocyte chemoattractant protein, enhanced transendothelial migration of monocytes, and augmented monocyte-endothelial adhesion. Remarkably, all of the above-mentioned effects of TNF-alpha were attenuated by CB(2) agonists. CB(2) agonists also decreased the TNF-alpha- and/or endotoxin-induced ICAM-1 and VCAM-1 expression in isolated aortas and the adhesion of monocytes to aortic vascular endothelium. CB(1) and CB(2) receptors were detectable in human coronary artery endothelial cells by Western blotting, RT-PCR, real-time PCR, and immunofluorescence staining. Because the above-mentioned TNF-alpha-induced phenotypic changes are critical in the initiation and progression of atherosclerosis and restenosis, our findings suggest that targeting CB(2) receptors on endothelial cells may offer a novel approach in the treatment of these pathologies. Topics: Animals; Anti-Inflammatory Agents; Aorta; Cannabinoids; Cells, Cultured; Chemokine CCL2; Coronary Vessels; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelial Cells; Humans; Inflammation; Intercellular Adhesion Molecule-1; Leukocyte Rolling; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Monocytes; NF-kappa B; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; rhoA GTP-Binding Protein; RNA, Messenger; Signal Transduction; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1 | 2007 |
Involvement of cannabinoid CB(2) receptor-mediated response and efficacy of cannabinoid CB(2) receptor inverse agonist, JTE-907, in cutaneous inflammation in mice.
Involvement of cannabinoid CB(2) receptor and effect of cannabinoid CB(2) receptor antagonist/inverse agonists on cutaneous inflammation were investigated. Mice ears topically exposed to an ether-linked analogue of 2-arachidonoylglycerol (2-AG-E) or selective cannabinoid CB(2) receptor agonist, {4-[4-(1,1-dimethylheptyl)-2,6-dimethoxy-phenyl]-6.6-dimethyl-bicyclo[3.1.1]hept-2-en-2-yl}-methanol (HU-308), had early and late ear swelling (0--24 h and 1--8 days after exposure, respectively). Both types of responses induced by 2-AG-E were significantly suppressed by oral administration of cannabinoid CB(2) receptor antagonist/inverse agonists, [N-(benzo[1,3]dioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentyloxy-1,2-dihydroquinoline-3-carboxamide] (JTE-907) and {N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2 yl]5-(4-chloro-3-methyl-phenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide}} (SR 144528). In contrast, JTE-907 did not affect arachidonic acid-induced swelling. Orally administered JTE-907 (0.1-10 mg/kg) and SR 144528 (1 mg/kg) also produced significant inhibition of dinitrofluorobenzene-induced ear swelling, with increased cannabinoid CB(2) receptor mRNA expression observed in the inflamed ear. These results suggest that cannabinoid CB(2) receptor is partially involved in local inflammatory responses and cannabinoid CB(2) receptor antagonist/inverse agonist has beneficial effects on ear swelling. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acid; Area Under Curve; Camphanes; Cannabinoids; Dinitrofluorobenzene; Dioxoles; Disease Models, Animal; Drug Eruptions; Ear, External; Female; Indomethacin; Inflammation; Lymph Nodes; Mice; Mice, Inbred BALB C; Pyrazoles; Quinolones; Receptor, Cannabinoid, CB2; RNA, Messenger; Time Factors | 2005 |